Plasma stability

Last updated
A ball at rest in a valley (right) will return to the bottom if moved slightly, or perturbed, and is thus dynamically stable. One on the top of a hill (left) will accelerate away from its rest point if perturbed, and is thus dynamically unstable. Plasmas have many mechanisms that make them fall into the second group under certain conditions. Unstable , neutral, and stable equilibrium.png
A ball at rest in a valley (right) will return to the bottom if moved slightly, or perturbed, and is thus dynamically stable. One on the top of a hill (left) will accelerate away from its rest point if perturbed, and is thus dynamically unstable. Plasmas have many mechanisms that make them fall into the second group under certain conditions.

In plasma physics, plasma stability concerns the stability properties of a plasma in equilibrium and its behavior under small perturbations. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. It is an important consideration in topics such as nuclear fusion and astrophysical plasma.

Contents

In many cases, a plasma can be treated as a fluid and analyzed with the theory of magnetohydrodynamics (MHD). MHD stability is necessary for stable operation of magnetic confinement fusion devices and places certain operational limits. The beta limit, for example, sets the maximum achievable plasma beta in tokamaks.

On the other hand, small-scale plasma instabilities (typically described by kinetic theory), such as the drift wave instability, are believed to be the driving mechanism of turbulent transport in tokamaks, which leads to high rate of particle and energy transport across the confining magnetic fields. Plasma instabilities described by kinetic theory can contain aspects such as finite Larmor radius (FLR) effects and resonant wave-particle interactions, which is not captured in fluid models such as MHD.

Plasma instabilities

Plasma instabilities can be divided into two general groups:

  1. hydrodynamic instabilities
  2. kinetic instabilities.

Plasma instabilities are also categorised into different modes (e.g. with reference to a particle beam): [1] [2]

Mode
(azimuthal wave number)
NoteDescriptionRadial modesDescription
m=0Sausage instability:
displays harmonic variations of beam radius with distance along the beam axis
n=0Axial hollowing
n=1Standard sausaging
n=2Axial bunching
m=1Sinuous, kink or hose instability:
represents transverse displacements of the beam cross-section without change in the form or in a beam characteristics other than the position of its center of mass
m=2Filamentation modes:
growth leads towards the breakup of the beam into separate filaments.
Gives an elliptic cross-section
m=3Gives a pyriform (pear-shaped) cross-section
m=4Consists of four intertwined helices

List of plasma instabilities

MHD Instabilities

Beta is a ratio of the plasma pressure over the magnetic field strength. [33]

MHD stability at high beta is crucial for a compact, cost-effective magnetic fusion reactor. Fusion power density varies roughly as at constant magnetic field, or as at constant bootstrap fraction in configurations with externally driven plasma current. (Here is the normalized beta.) In many cases MHD stability represents the primary limitation on beta and thus on fusion power density. MHD stability is also closely tied to issues of creation and sustainment of certain magnetic configurations, energy confinement, and steady-state operation. Critical issues include understanding and extending the stability limits through the use of a variety of plasma configurations, and developing active means for reliable operation near those limits. Accurate predictive capabilities are needed, which will require the addition of new physics to existing MHD models. Although a wide range of magnetic configurations exist, the underlying MHD physics is common to all. Understanding of MHD stability gained in one configuration can benefit others, by verifying analytic theories, providing benchmarks for predictive MHD stability codes, and advancing the development of active control techniques.

The most fundamental and critical stability issue for magnetic fusion is simply that MHD instabilities often limit performance at high beta. In most cases the important instabilities are long wavelength, global modes, because of their ability to cause severe degradation of energy confinement or termination of the plasma. Some important examples that are common to many magnetic configurations are ideal kink modes, resistive wall modes, and neoclassical tearing modes. A possible consequence of violating stability boundaries is a disruption, a sudden loss of thermal energy often followed by termination of the discharge. The key issue thus includes understanding the nature of the beta limit in the various configurations, including the associated thermal and magnetic stresses, and finding ways to avoid the limits or mitigate the consequences. A wide range of approaches to preventing such instabilities is under investigation, including optimization of the configuration of the plasma and its confinement device, control of the internal structure of the plasma, and active control of the MHD instabilities.

Ideal Instabilities

Ideal MHD instabilities driven by current or pressure gradients represent the ultimate operational limit for most configurations. The long-wavelength kink mode and short-wavelength ballooning mode limits are generally well understood and can in principle be avoided.

Intermediate-wavelength modes (n ~ 510 modes encountered in tokamak edge plasmas, for example) are less well understood due to the computationally intensive nature of the stability calculations. The extensive beta limit database for tokamaks is consistent with ideal MHD stability limits, yielding agreement to within about 10% in beta for cases where the internal profiles of the plasma are accurately measured. This good agreement provides confidence in ideal stability calculations for other configurations and in the design of prototype fusion reactors.

Resistive Wall Modes

Resistive wall modes (RWM) develop in plasmas that require the presence of a perfectly conducting wall for stability. RWM stability is a key issue for many magnetic configurations. Moderate beta values are possible without a nearby wall in the tokamak, stellarator, and other configurations, but a nearby conducting wall can significantly improve ideal kink mode stability in most configurations, including the tokamak, ST, reversed field pinch (RFP), spheromak, and possibly the FRC. In the advanced tokamak and ST, wall stabilization is critical for operation with a large bootstrap fraction. The spheromak requires wall stabilization to avoid the low-m, n tilt and shift modes, and possibly bending modes. However, in the presence of a non-ideal wall, the slowly growing RWM is unstable. The resistive wall mode has been a long-standing issue for the RFP, and has more recently been observed in tokamak experiments. Progress in understanding the physics of the RWM and developing the means to stabilize it could be directly applicable to all magnetic configurations. A closely related issue is to understand plasma rotation, its sources and sinks, and its role in stabilizing the RWM.

Resistive instabilities

Resistive instabilities are an issue for all magnetic configurations, since the onset can occur at beta values well below the ideal limit. The stability of neoclassical tearing modes (NTM) is a key issue for magnetic configurations with a strong bootstrap current. The NTM is a metastable mode; in certain plasma configurations, a sufficiently large deformation of the bootstrap current produced by a “seed island” can contribute to the growth of the island. The NTM is already an important performance-limiting factor in many tokamak experiments, leading to degraded confinement or disruption. Although the basic mechanism is well established, the capability to predict the onset in present and future devices requires better understanding of the damping mechanisms which determine the threshold island size, and of the mode coupling by which other instabilities (such as sawteeth in tokamaks) can generate seed islands. Resistive Ballooning Mode, similar to ideal ballooning, but with finite resistivity taken into consideration, provides another example of a resistive instability.

Opportunities for Improving MHD Stability

Configuration

The configuration of the plasma and its confinement device represent an opportunity to improve MHD stability in a robust way. The benefits of discharge shaping and low aspect ratio for ideal MHD stability have been clearly demonstrated in tokamaks and STs, and will continue to be investigated in experiments such as DIII-D, Alcator C-Mod, NSTX, and MAST. New stellarator experiments such as NCSX (proposed) will test the prediction that addition of appropriately designed helical coils can stabilize ideal kink modes at high beta, and lower-beta tests of ballooning stability are possible in HSX. The new ST experiments provide an opportunity to test predictions that a low aspect ratio yields improved stability to tearing modes, including neoclassical, through a large stabilizing “Glasser effect” term associated with a large Pfirsch-Schlüter current. Neoclassical tearing modes can be avoided by minimizing the bootstrap current in quasi-helical and quasi-omnigenous stellarator configurations. Neoclassical tearing modes are also stabilized with the appropriate relative signs of the bootstrap current and the magnetic shear; this prediction is supported by the absence of NTMs in central negative shear regions of tokamaks. Stellarator configurations such as the proposed NCSX, a quasi-axisymmetric stellarator design, can be created with negative magnetic shear and positive bootstrap current to achieve stability to the NTM. Kink mode stabilization by a resistive wall has been demonstrated in RFPs and tokamaks, and will be investigated in other configurations including STs (NSTX) and spheromaks (SSPX). A new proposal to stabilize resistive wall modes by a flowing liquid lithium wall needs further evaluation.

Internal Structure

Control of the internal structure of the plasma allows more active avoidance of MHD instabilities. Maintaining the proper current density profile, for example, can help to maintain stability to tearing modes. Open-loop optimization of the pressure and current density profiles with external heating and current drive sources is routinely used in many devices. Improved diagnostic measurements along with localized heating and current drive sources, now becoming available, will allow active feedback control of the internal profiles in the near future. Such work is beginning or planned in most of the large tokamaks (JET, JT60U, DIIID, CMod, and ASDEXU) using RF heating and current drive. Real-time analysis of profile data such as MSE current profile measurements and real-time identification of stability boundaries are essential components of profile control. Strong plasma rotation can stabilize resistive wall modes, as demonstrated in tokamak experiments, and rotational shear is also predicted to stabilize resistive modes. Opportunities to test these predictions are provided by configurations such as the ST, spheromak, and FRC, which have a large natural diamagnetic rotation, as well as tokamaks with rotation driven by neutral beam injection. The Electric Tokamak experiment is intended to have a very large driven rotation, approaching Alfvénic regimes where ideal stability may also be influenced. Maintaining sufficient plasma rotation, and the possible role of the RWM in damping the rotation, are important issues that can be investigated in these experiments.

Feedback Control

Active feedback control of MHD instabilities should allow operation beyond the “passive” stability limits. Localized RF current drive at the rational surface is predicted to reduce or eliminate neoclassical tearing mode islands. Experiments have begun in ASDEXU and COMPASS-D with promising results, and are planned for next year [ clarification needed ] in DIIID. Routine use of such a technique in generalized plasma conditions will require real-time identification of the unstable mode and its radial location. If the plasma rotation needed to stabilize the resistive wall mode cannot be maintained, feedback stabilization with external coils will be required. Feedback experiments have begun in DIIID and HBT-EP, and feedback control should be explored for the RFP and other configurations. Physics understanding of these active control techniques will be directly applicable between configurations.

Disruption Mitigation

The techniques discussed above for improving MHD stability are the principal means of avoiding disruptions. However, in the event that these techniques do not prevent an instability, the effects of a disruption can be mitigated by various techniques. Experiments in JT60U have demonstrated reduction of electromagnetic stresses through operation at a neutral point for vertical stability. Pre-emptive removal of the plasma energy by injection of a large gas puff or an impurity pellet has been demonstrated in tokamak experiments, and ongoing experiments in CMod, JT60U, ASDEXU, and DIIID will improve the understanding and predictive capability. Cryogenic liquid jets of helium are another proposed technique, which may be required for larger devices. Mitigation techniques developed for tokamaks will be directly applicable to other configurations.

See also

Related Research Articles

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Reversed field pinch</span> Magnetic field plasma confinement device

A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

The Small Tight Aspect Ratio Tokamak, or START was a nuclear fusion experiment that used magnetic confinement to hold plasma. START was the first full-sized machine to use the spherical tokamak design, which aimed to greatly reduce the aspect ratio of the traditional tokamak design.

<span class="mw-page-title-main">ASDEX Upgrade</span>

ASDEX Upgrade is a divertor tokamak at the Max-Planck-Institut für Plasmaphysik, Garching that went into operation in 1991. At present, it is Germany's second largest fusion experiment after stellarator Wendelstein 7-X.

<span class="mw-page-title-main">Tokamak à configuration variable</span> Swiss research fusion reactor at the École Polytechnique Fédérale de Lausanne

The tokamak à configuration variable is an experimental tokamak located at the École Polytechnique Fédérale de Lausanne (EPFL) Swiss Plasma Center (SPC) in Lausanne, Switzerland. As the largest experimental facility of the Swiss Plasma Center, the TCV tokamak explores the physics of magnetic confinement fusion. It distinguishes itself from other tokamaks with its specialized plasma shaping capability, which can produce diverse plasma shapes without requiring hardware modifications.

An edge-localized mode (ELM) is a plasma instability occurring in the edge region of a tokamak plasma due to periodic relaxations of the edge transport barrier in high-confinement mode. Each ELM burst is associated with expulsion of particles and energy from the confined plasma into the scrape-off layer. This phenomenon was first observed in the ASDEX tokamak in 1981. Diamagnetic effects in the model equations expand the size of the parameter space in which solutions of repeated sawteeth can be recovered compared to a resistive MHD model. An ELM can expel up to 20 percent of the reactor's energy.

<span class="mw-page-title-main">Helically Symmetric Experiment</span>

The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

The ballooning instability is a type of internal pressure-driven plasma instability usually seen in tokamak fusion power reactors or in space plasmas. It is important in fusion research as it determines a set of criteria for the maximum achievable plasma beta. The name refers to the shape and action of the instability, which acts like the elongations formed in a long balloon when it is squeezed. In literature, the structure of these elongations are commonly referred to as 'fingers'.

<span class="mw-page-title-main">Divertor</span>

In magnetic confinement fusion, a divertor or diverted configuration is a magnetic field configuration of a tokamak or a stellarator which separates the confined plasma from the material surface of the device. The plasma particles which diffuse across the boundary of the confined region are diverted by the open, wall-intersecting magnetic field lines to wall structures which are called the divertor targets, usually remote from the confined plasma. The magnetic divertor extracts heat and ash produced by the fusion reaction, minimizes plasma contamination, and protects the surrounding walls from thermal and neutronic loads.

<span class="mw-page-title-main">Princeton field-reversed configuration</span>

The Princeton field-reversed configuration (PFRC) is a series of experiments in plasma physics, an experimental program to evaluate a configuration for a fusion power reactor, at the Princeton Plasma Physics Laboratory (PPPL). The experiment probes the dynamics of long-pulse, collisionless, low s-parameter field-reversed configurations (FRCs) formed with odd-parity rotating magnetic fields. FRCs are the evolution of the Greek engineer's Nicholas C. Christofilos original idea of E-layers which he developed for the Astron fusion reactor. The PFRC program aims to experimentally verify the physics predictions that such configurations are globally stable and have transport levels comparable with classical magnetic diffusion. It also aims to apply this technology to the Direct Fusion Drive concept for spacecraft propulsion.

<span class="mw-page-title-main">Tokamak sawtooth</span> Relaxation in the core of tokamak plasmas

A sawtooth is a relaxation that is commonly observed in the core of tokamak plasmas, first reported in 1974. The relaxations occur quasi-periodically and cause a sudden drop in the temperature and density in the center of the plasma. A soft-xray pinhole camera pointed toward the plasma core during sawtooth activity will produce a sawtooth-like signal. Sawteeth effectively limit the amplitude of the central current density. The Kadomtsev model of sawteeth is a classic example of magnetic reconnection. Other repeated relaxation oscillations occurring in tokamaks include the edge localized mode (ELM) which effectively limits the pressure gradient at the plasma edge and the fishbone instability which effectively limits the density and pressure of fast particles.

The Prairie View (PV) Rotamak is a plasma physics experiment at Prairie View A&M University. The experiment studies magnetic plasma confinement to support controlled nuclear fusion experiments. Specifically, the PV Rotamak can be used as either a spherical tokamak or a field-reversed configuration. Some time between 2015 and 2017, most personnel moved on to advanced career opportunities. In 2017, a Final Report to Department of Energy (DOE) was prepared and submitted by Dr. Saganti of PVAMU on the entire research work supported by DOE for 12 years.

The interchange instability, also known as the Kruskal–Schwarzchild instability or flute instability, is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved.

Hartmut Zohm is a German plasma physicist who is known for his work on the ASDEX Upgrade machine. He received the 2014 John Dawson Award and the 2016 Hannes Alfvén Prize for successfully demonstrating that neoclassical tearing modes in tokamaks can be stabilized by electron cyclotron resonance heating, which is an important design consideration for pushing the performance limit of the ITER.

Ksenia Aleksandrovna Razumova is a Russian physicist. She graduated from the Physical Faculty of Moscow University in 1955 and took a position at the then called Kurchatov Institute of Atomic Energy in Moscow, then USSR. She defended her Ph.D. in 1966, was Candidate in Physical and Mathematical sciences in 1967, and became Doctor of Sciences in 1984. She is laboratory head at the Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute. Since the beginning she is actively involved plasma physics in research on the tokamak line of Magnetic confinement fusion.

The Tokamak Physics Experiment (TPX) was a plasma physics experiment that was designed but not built. It was designed by an inter-organizational team in the USA led by Princeton Plasma Physics Laboratory. The experiment was designed to test theories about how Tokamaks would behave in a high-performance, steady-state regime.

References

  1. Gsponer, Andre (2004-09-29). "Physics of high-intensity high-energy particle beam propagation in open air and outer-space plasmas". arXiv: physics/0409157 .
  2. Zohuri, Bahman (2017-02-23). Magnetic Confinement Fusion Driven Thermonuclear Energy. Springer. ISBN   9783319511771.
  3. Buneman, O., "Instability, Turbulence, and Conductivity in Current-Carrying Plasma" (1958) Physical Review Letters, vol. 1, Issue 1, pp. 8-9
  4. Farley, D. T. (1963). "Two-Stream Plasma Instability as a Source of Irregularities in the Ionosphere". Physical Review Letters. 10 (7): 279–282. Bibcode:1963PhRvL..10..279F. doi:10.1103/PhysRevLett.10.279.
  5. Buneman, O. (1963). "Excitation of Field Aligned Sound Waves by Electron Streams". Physical Review Letters. 10 (7): 285–287. Bibcode:1963PhRvL..10..285B. doi:10.1103/PhysRevLett.10.285.
  6. Meuris, Peter; Verheest, Frank; Lakhina, G.S. (1997). "Influence of dust mass distributions on generalized Jeans-Buneman instabilities in dusty plasmas". Planetary and Space Science. 45 (4): 449–454. Bibcode:1997P&SS...45..449M. doi:10.1016/s0032-0633(96)00155-9. ISSN   0032-0633.
  7. Pandey, B P; Lakhina, G S (1998). "Jeans-Buneman instability in a dusty plasma". Pramana. 50 (2): 191–204. Bibcode:1998Prama..50..191P. doi:10.1007/bf02847529. ISSN   0304-4289. S2CID   119658085.
  8. Albright, B. J.; Yin, L.; Bowers, Kevin J.; Hegelich, B. M.; Flippo, K. A.; Kwan, T. J. T.; Fernández, J. C. (2007). "Relativistic Buneman instability in the laser breakout afterburner". Physics of Plasmas. 14 (9): 094502. Bibcode:2007PhPl...14i4502A. doi:10.1063/1.2768933. ISSN   1070-664X.
  9. Kho, T. H.; Lin, A. T., "Cyclotron-Cherenkov and Cherenkov instabilities" (1990) IEEE Transactions on Plasma Science (ISSN 0093-3813), vol. 18, June 1990, p. 513-517
  10. Finn, J. M.; Kaw, P. K. (1977). "Coalescence instability of magnetic islands" (PDF). Physics of Fluids. 20 (1): 72. Bibcode:1977PhFl...20...72F. doi:10.1063/1.861709. ISSN   0031-9171. OSTI   7364034. Archived (PDF) from the original on 2022-10-09.
  11. Sprangle, P.; Chu, K. R.; Drobot, A. T.; Granatstein, V. L. (1977). "Theory of the cyclotron maser instability". 1977 2nd International Topical Conference on Electron Beam Research Technology. 2: 703–716.
  12. Uhm, H. S.; Siambis, J. G., "Diocotron instability of a relativistic hollow electron beam" (1979) Physics of Fluids, vol. 22, Dec. 1979, p. 2377-2381.
  13. B. Kadomtsev, B (1975-09-30). "On disruptive instability in tokamaks". Soviet Journal of Plasma Physics. 1: 710–715.
  14. 11 November, 2003, BBC News: Solar flare 'reproduced' in lab
  15. Connor, J. W. (1998). "Edge-localized modes - physics and theory". Plasma Physics and Controlled Fusion. 40 (5): 531–542. Bibcode:1998PPCF...40..531C. doi:10.1088/0741-3335/40/5/002. ISSN   0741-3335. S2CID   250851791.
  16. Cowley, Steven C.; Wilson, Howard; Hurricane, Omar; Fong, Bryan (2003). "Explosive instabilities: from solar flares to edge localized modes in tokamaks". Plasma Physics and Controlled Fusion. 45 (12A): A31. Bibcode:2003PPCF...45A..31C. doi:10.1088/0741-3335/45/12A/003. ISSN   0741-3335. S2CID   250824453.
  17. Benáček, J.; Karlický, M. (2018). "Double plasma resonance instability as a source of solar zebra emission". Astronomy & Astrophysics. 611 (60): A60. arXiv: 1711.04281 . Bibcode:2018A&A...611A..60B. doi:10.1051/0004-6361/201731424. ISSN   0004-6361. S2CID   119402131.
  18. Rutherford, P. H. (1968). "Drift Instabilities in General Magnetic Field Configurations". Physics of Fluids. 11 (3): 569. Bibcode:1968PhFl...11..569R. doi:10.1063/1.1691954. ISSN   0031-9171.
  19. Rosenberg, M.; Merlino, R. L. (2013). "Drift instability in a positive ion–negative ion plasma". Journal of Plasma Physics. 79 (5): 949–952. Bibcode:2013JPlPh..79..949R. doi:10.1017/S0022377813000858. ISSN   0022-3778. S2CID   85520731.
  20. Goldston, R. J. (1995). Introduction to plasma physics. Rutherford, P. H. (Paul Harding), 1938-. Bristol, UK: Institute of Physics Pub. ISBN   978-0750303255. OCLC   33079555.
  21. Pogutse, O. P. (1968). "Magnetic drift instability in a collisionless plasma". Plasma Physics. 10 (7): 649–664. Bibcode:1968PlPh...10..649P. doi:10.1088/0032-1028/10/7/301. ISSN   0032-1028.
  22. Krafft, C.; Volokitin, A. (2010). "Nonlinear fan instability of electromagnetic waves". Physics of Plasmas. 17 (10): 102303. Bibcode:2010PhPl...17j2303K. doi:10.1063/1.3479829. ISSN   1070-664X.
  23. Shukla, P. K.; Stenflo, L. (2006-02-08). "Jeans instability in a self-gravitating dusty plasma". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 462 (2066): 403–407. Bibcode:2006RSPSA.462..403S. doi:10.1098/rspa.2005.1594. ISSN   1364-5021. S2CID   122754120.
  24. Sarkar, Susmita; Maity, Saumyen; Roy, B; Khan, Manoranjan (2010-01-18). "Jean's instability in a drifting dusty plasma in the presence of secondary electron emission". Physica Scripta. 81 (2): 025504. Bibcode:2010PhyS...81b5504S. doi:10.1088/0031-8949/81/02/025504. ISSN   0031-8949. S2CID   121301944.
  25. Goldston, R. J. (1995). Introduction to plasma physics. Rutherford, P. H. (Paul Harding), 1938-. Bristol, UK: Institute of Physics Pub. ISBN   978-0750303255. OCLC   33079555.
  26. Kim, J.; Ryu, D.; Hong, S. S.; Lee, S. M.; Franco, J. (2004), "The Parker Instability", Astrophysics and Space Science Library, Kluwer Academic Publishers, vol. 315, pp. 315–322, Bibcode:2004ASSL..315..315K, doi:10.1007/1-4020-2620-x_65, ISBN   978-1402026195
  27. Bissell, J. J., Ridgers, C. P. and Kingham, R. J. "Field Compressing Magnetothermal Instability in Laser Plasmas" (2010) Physical Review Letters, Vol. 105,175001
  28. Frank-Kamenetskii, D. A. (1972), "Pinch Instability", Plasma, Macmillan Education UK, pp. 95–96, doi:10.1007/978-1-349-01552-8_30, ISBN   9781349015542
  29. Meierovich, O. E. (May 1986). "Stability of a Bennett pinch" (PDF). Journal of Experimental and Theoretical Physics. 63 (5): 1646. Archived (PDF) from the original on 2022-10-09.
  30. Boeuf, Jean-Pierre; Chaudhury, Bhaskar (2013). "Rotating Instability in Low-Temperature Magnetized Plasmas". Physical Review Letters. 111 (15): 155005. Bibcode:2013PhRvL.111o5005B. doi:10.1103/PhysRevLett.111.155005. PMID   24160609.
  31. Furth, Harold P.; Killeen, John; Rosenbluth, Marshall N. (1963). "Finite-Resistivity Instabilities of a Sheet Pinch". Physics of Fluids. 6 (4): 459. Bibcode:1963PhFl....6..459F. doi:10.1063/1.1706761. ISSN   0031-9171.
  32. Rowlands, G.; Dieckmann, M. E.; Shukla, P. K. (2007). "The plasma filamentation instability in one dimension: nonlinear evolution". New Journal of Physics. 9 (8): 247. Bibcode:2007NJPh....9..247R. doi: 10.1088/1367-2630/9/8/247 . ISSN   1367-2630.
  33. Wesson, J: "Tokamaks", 3rd edition page 115, Oxford University Press, 2004