Electrothermal instability

Last updated

The electrothermal instability (also known as ionization instability , non-equilibrium instability or Velikhov instability in the literature) is a magnetohydrodynamic (MHD) instability appearing in magnetized non-thermal plasmas used in MHD converters. It was first theoretically discovered in 1962 and experimentally measured into a MHD generator in 1963 by Evgeny Velikhov. [1] [2] [3]

Contents

"This paper shows that it is possible to assert sufficiently specifically that the ionization instability is the number one problem for the utilization of a plasma with hot electrons."

Dr. Evgeny Velikov, at the 7th International Conference on Ionization Phenomena in Gases, Belgrade, Yugoslavia (1965). [3]

Physical explanation and characteristics

Evolution of the electrothermal instability in a Faraday MHD converter. Electric current lines. Electrothermal instability evolution.gif
Evolution of the electrothermal instability in a Faraday MHD converter. Electric current lines.

This instability is a turbulence of the electron gas in a non-equilibrium plasma (i.e. where the electron temperature Te is greatly higher than the overall gas temperature Tg). It arises when a magnetic field powerful enough is applied in such a plasma, reaching a critical Hall parameter βcr.

Locally, the number of electrons and their temperature fluctuate (electron density and thermal velocity) as the electric current and the electric field.

The Velikhov instability is a kind of ionization wave system, almost frozen in the two temperature gas. The reader can evidence such a stationary wave phenomenon just applying a transverse magnetic field with a permanent magnet on the low-pressure control gauge (Geissler tube) provided on vacuum pumps. In this little gas-discharge bulb a high voltage electric potential is applied between two electrodes which generates an electric glow discharge (pinkish for air) when the pressure has become low enough. When the transverse magnetic field is applied on the bulb, some oblique grooves appear in the plasma, typical of the electrothermal instability.

The electrothermal instability occurs extremely quickly, in a few microseconds. The plasma becomes non-homogeneous, transformed into alternating layers of high free electron and poor free electron densities. Visually the plasma appears stratified, as a "pile of plates".

Hall effect in plasmas

The Hall effect in ionized gases has nothing to do with the Hall effect in solids (where the Hall parameter is always very inferior to unity). In a plasma, the Hall parameter can take any value.

The Hall parameter β in a plasma is the ratio between the electron gyrofrequency Ωe and the electron-heavy particles collision frequency ν:

where

e is the electron charge (1.6 × 10−19 coulomb)
B is the magnetic field (in teslas)
me is the electron mass (0.9 × 10−30 kg)

The Hall parameter value increases with the magnetic field strength.

Physically, when the Hall parameter is low, the trajectories of electrons between two encounters with heavy particles (neutral or ion) are almost linear. But if the Hall parameter is high, the electron movements are highly curved. The current density vector J is no more colinear with the electric field vector E. The two vectors J and E make the Hall angle θ which also gives the Hall parameter:

Plasma conductivity and magnetic fields

In a non-equilibrium ionized gas with high Hall parameter, Ohm's law,

where σ is the electrical conductivity (in siemens per metre),

is a matrix, because the electrical conductivity σ is a matrix[ dubious ]:

σS is the scalar electrical conductivity:

where ne is the electron density (number of electrons per cubic meter).

The current density J has two components:

Therefore,

The Hall effect makes electrons "crabwalk".

When the magnetic field B is high, the Hall parameter β is also high, and

Thus both conductivities

become weak, therefore the electric current cannot flow in these areas. This explains why the electron current density is weak where the magnetic field is the strongest.

Critical Hall parameter

The electrothermal instability occurs in a plasma at a (Te > Tg) regime when the Hall parameter is higher than a critical value βcr.

We have

where μ is the electron mobility (in m2/(V·s))

and

where Ei is the ionization energy (in electron volts) and k the Boltzmann constant.

The growth rate of the instability is

And the critical Hall parameter is

The critical Hall parameter βcr greatly varies according to the degree of ionization α :

where ni is the ion density and nn the neutral density (in particles per cubic metre).

The electron-ion collision frequency νei is much greater than the electron-neutral collision frequency νen.

Therefore, with a weak energy degree of ionization α, the electron-ion collision frequency νei can equal the electron-neutral collision frequency νen.

NB: The term "fully ionized gas", introduced by Lyman Spitzer, does not mean the degree of ionization is unity, but only that the plasma is Coulomb-collision dominated, which can correspond to a degree of ionization as low as 0.01%.

Technical problems and solutions

A two-temperature gas, globally cool but with hot electrons (Te >> Tg) is a key feature for practical MHD converters, because it allows the gas to reach sufficient electrical conductivity while protecting materials from thermal ablation. This idea was first introduced for MHD generators in the early 1960s by Jack L. Kerrebrock [4] [5] [6] and Alexander E. Sheindlin. [7]

But the unexpected large and quick drop of current density due to electrothermal instability ruined many MHD projects worldwide, while previous calculations had envisaged energy conversion efficiencies over 60% with these devices. Although some studies were made into the instability by various researchers, [8] [9] no real solution was found at that time. This prevented further developments of non-equilibrium MHD generators and caused most engaged countries to cancel their MHD power plant programs and to retire completely from this field of research in the early 1970s, because this technical problem was then considered to be an impassable stumbling block.

Nevertheless, experimental studies about the growth rate of the electrothermal instability and the critical conditions showed that a stability region still exists for high electron temperatures. [10] The stability is gained by a quick transition to "fully ionized" conditions (fast enough to overtake the growth rate of the electrothermal instability) where the Hall parameter decreases because of the collision frequency rising, below its critical value which is then about 2. Stable operation with several megawatts of power output had been experimentally achieved as from 1967 with high electron temperature. [11] [12] [13] [14] [15] But this electrothermal control cannot provide an adequate decrease of Tg over long durations (to avoid thermal ablation), so such a solution is not practical for industrial energy conversion.

Another idea to control the instability is to increase the non-thermal ionisation rate by using a laser which would act like a guidance system for streamers between electrodes, increasing the electron density and the conductivity, therefore lowering the Hall parameter to below its critical value along these paths. But this concept has never been tested experimentally. [16]

In the 1970s and more recently, some researchers tried to master the instability with oscillating fields. Oscillations of the electric field or of an additional RF electromagnetic field locally modify the Hall parameter. [17] [18]

Finally, a solution has been found in the early 1980s to completely remove the electrothermal instability within MHD converters, by means of non-homogeneous magnetic fields. A strong magnetic field implies a high Hall parameter, and therefore a low electrical conductivity in the medium. So the idea is to create some "paths" linking one electrode to the other, where the magnetic field is locally attenuated. Then the electric current tends to flow in these low B-field paths as thin plasma cords or streamers, where the electron density and temperature increase. The plasma becomes locally Coulombian, and the local Hall parameter value falls, while its critical threshold rises. Experiments where streamers do not present any inhomogeneity have been obtained with this method. [19] [20] [21] This effect, strongly nonlinear, was unexpected but led to a very effective system for streamer guidance.

But this last working solution was discovered too late, 10 years after all the international effort about MHD power generation had been abandoned in most nations. Vladimir S. Golubev, coworker of Evgeny Velikhov, who met Jean-Pierre Petit in 1983 at the 9th MHD International conference in Moscow, made the following comment[ citation needed ] to the inventor of the magnetic stabilization method:

You bring the cure, but the patient already died...

However, this electrothermal stabilization by magnetic confinement, although found too late for the development of MHD power plants, might be of interest for future applications of MHD to aerodynamics (magnetoplasma-aerodynamics for hypersonic flight). [22]

See also

Related Research Articles

<span class="mw-page-title-main">Hall effect</span> Electromagnetic effect in physics

The Hall effect is the production of a potential difference across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879.

<span class="mw-page-title-main">Magnetic sail</span> Proposed spacecraft propulsion method

A magnetic sail is a proposed method of spacecraft propulsion where an onboard magnetic field source interacts with a plasma wind to form an artificial magnetosphere that acts as a sail, transferring force from the wind to the spacecraft requiring little to no propellant as detailed for each proposed magnetic sail design in this article.

<span class="mw-page-title-main">Plasma stability</span> Degree to which disturbing a plasma system at equilibrium will destabilize it

In plasma physics, plasma stability concerns the stability properties of a plasma in equilibrium and its behavior under small perturbations. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. It is an important consideration in topics such as nuclear fusion and astrophysical plasma.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

<span class="mw-page-title-main">Magnetohydrodynamic drive</span> Vehicle propulsion using electromagnetic fields

A magnetohydrodynamic drive or MHD accelerator is a method for propelling vehicles using only electric and magnetic fields with no moving parts, accelerating an electrically conductive propellant with magnetohydrodynamics. The fluid is directed to the rear and as a reaction, the vehicle accelerates forward.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.

A magnetohydrodynamic generator is a magnetohydrodynamic converter that transforms thermal energy and kinetic energy directly into electricity. An MHD generator, like a conventional generator, relies on moving a conductor through a magnetic field to generate electric current. The MHD generator uses hot conductive ionized gas as the moving conductor. The mechanical dynamo, in contrast, uses the motion of mechanical devices to accomplish this.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.

<span class="mw-page-title-main">Pinch (plasma physics)</span> Compression of an electrically conducting filament by magnetic forces

A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.

Neutral-beam injection (NBI) is one method used to heat plasma inside a fusion device consisting in a beam of high-energy neutral particles that can enter the magnetic confinement field. When these neutral particles are ionized by collision with the plasma particles, they are kept in the plasma by the confining magnetic field and can transfer most of their energy by further collisions with the plasma. By tangential injection in the torus, neutral beams also provide momentum to the plasma and current drive, one essential feature for long pulses of burning plasmas. Neutral-beam injection is a flexible and reliable technique, which has been the main heating system on a large variety of fusion devices. To date, all NBI systems were based on positive precursor ion beams. In the 1990s there has been impressive progress in negative ion sources and accelerators with the construction of multi-megawatt negative-ion-based NBI systems at LHD (H0, 180 keV) and JT-60U (D0, 500 keV). The NBI designed for ITER is a substantial challenge (D0, 1 MeV, 40 A) and a prototype is being constructed to optimize its performance in view of the ITER future operations. Other ways to heat plasma for nuclear fusion include RF heating, electron cyclotron resonance heating (ECRH), ion cyclotron resonance heating (ICRH), and lower hybrid resonance heating (LH).

The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B²/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.

<span class="mw-page-title-main">Evgeny Velikhov</span> Russian physicist

Evgeny Pavlovich Velikhov is a physicist and scientific leader in the Russian Federation. His scientific interests include plasma physics, lasers, controlled nuclear fusion, power engineering, and magnetohydrodynamics. He is the author of over 1500 scientific publications and a number of inventions and discoveries.

An ionization instability is any one of a category of plasma instabilities which is mediated by electron-impact ionization. In the most general sense, an ionization instability occurs from a feedback effect, when electrons produced by ionization go on to produce still more electrons through ionization in a self-reinforcing way.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.

The Spitzer resistivity is an expression describing the electrical resistance in a plasma, which was first formulated by Lyman Spitzer in 1950. The Spitzer resistivity of a plasma decreases in proportion to the electron temperature as .

<span class="mw-page-title-main">Magnetohydrodynamic converter</span> Electromagnetic machine with no moving parts

A magnetohydrodynamic converter is an electromagnetic machine with no moving parts involving magnetohydrodynamics, the study of the kinetics of electrically conductive fluids in the presence of electromagnetic fields. Such converters act on the fluid using the Lorentz force to operate in two possible ways: either as an electric generator called an MHD generator, extracting energy from a fluid in motion; or as an electric motor called an MHD accelerator or magnetohydrodynamic drive, putting a fluid in motion by injecting energy. MHD converters are indeed reversible, like many electromagnetic devices.

References

  1. Velikhov, E. P. (1962). "Paper 47". Hall instability of current carrying slightly ionized plasmas. 1st International Conference on MHD Electrical Power Generation. Newcastle upon Tyne, England. p. 135.
  2. Velikhov, E. P.; Dykhne, A. M. (8–13 July 1963). "Plasma turbulence due to the ionization instability in a strong magnetic field". Proceedings. 6th International Conference on Phenomena in Ionized Gases. Vol. 4. Paris, France. p. 511. Bibcode:1963pig4.conf..511V.
  3. 1 2 Velikhov, E. P.; Dykhne, A. M.; Shipuk, I. Ya (1965). Ionization instability of a plasma with hot electrons (PDF). 7th International Conference on Ionization Phenomena in Gases. Belgrade, Yugoslavia.
  4. Kerrebrock, J. L. (1 November 1960). "Non-equilibrium effects on conductivity and electrode heat transfer in ionized gases". Technical Note No. 4. OSTI   4843920.
  5. Kerrebrock, J. L. (June 1964). "Nonequilibrium ionization due to electron heating: I. Theory" (PDF). AIAA Journal. 2 (6): 1072–1080. Bibcode:1964AIAAJ...2.1072K. doi:10.2514/3.2496.[ permanent dead link ]
  6. Kerrebrock, J. L.; Hoffman, M. A. (June 1964). "Nonequilibrium ionization due to electron heating: II. Experiments" (PDF). AIAA Journal. 2 (6): 1080–1087. Bibcode:1964AIAAJ...2.1080H. doi:10.2514/3.2497.[ permanent dead link ]
  7. Sheindlin, A. E.; Batenin, V. A.; Asinovsky, E. I. (6 July 1964). "Investigation of non-equilibrium ionization in a mixture of argon and potassium". CONF-640701-102. International symposium on magnetohydrodynamic electric power generation. Paris, France. OSTI   5024025.
  8. Solbes, A. (24–30 July 1968). "A quasi linear plane wave study of electrothermal instabilities". SM/107/26. Electricity from MHD: Proceedings of a Symposium on magnetohydrodynamic electrical power generation. Vol. I. Warsaw, Poland: International Atomic Energy Agency.
  9. Nelson, A. H.; Haines, M. G. (26–28 March 1969). "Analysis of the nature and growth of electrothermal waves" (PDF). Proceedings. 10th Symposium in Engineering Aspects of MHD. MIT, Cambridge, MA, USA. Bibcode:1969PlPh...11..811N. doi:10.1088/0032-1028/11/10/003.
  10. Petit, J.-P.; Caressa, J.-P.; Valensi, J. (24–30 July 1968). Etude théorique et expérimentale, en tube à choc, des phénomènes accompagnant la mise hors d'équilibre dans un générateur MHD en cycle fermé [Theoretical and experimental study, using a shock tube, of the phenomena accompanying equilibrium breakdown in a closed-cycle MHD generator](PDF). Electricity from MHD: Proceedings of a Symposium on magnetohydrodynamic electrical power generation (in French). Vol. II. Warsaw, Poland: International Atomic Energy Agency. pp. 745–750.
  11. Petit, J.-P.; Valensi, J.; Dufresne, D.; Caressa, J.-P. (27 January 1969). "Caractéristiques électriques d'un générateur linéaire de Faraday utilisant un mélange binaire de gaz rares, avec ionisation hors d'équilibre" [Electrical characteristics of a linear Faraday generator using a binary mix of rare gases, with non-equilibrium ionization](PDF). Comptes rendus de l'Académie des sciences . Série A (in French) (268): 245–247.
  12. Petit, J.-P. (14 April 1969). "Performances théoriques d'un générateur du type de Faraday avec ionisation hors d'équilibre dans le gaz de conversion" [Theoretical performances of a Faraday-type generator with non-equilibrium ionization in the conversion gas](PDF). Série A (in French). 268: 835–838.{{cite journal}}: Cite journal requires |journal= (help)
  13. Petit, J.-P. (21 April 1969). "Instabilité de régime dans un générateur de Hall, avec ionisation hors d'équilibre" [Rate instability in a Hall generator with non-equilibrium ionization](PDF). Série A (in French). 268: 906–909.{{cite journal}}: Cite journal requires |journal= (help)
  14. Petit, J.-P.; Valensi, J. (1 September 1969). "Taux de croissance de l'instabilité électrothermique et paramètre de Hall critique dans les générateurs linéaires à cycle fermé lorsque la mobilité électronique est variable" [Growth rate of electrothermal instability and critical Hall parameter in closed-cycle MHD generators when the electron mobility is variable](PDF). Comptes Rendus de l'Académie des Sciences. Série A (in French) (269): 365–367.
  15. Hatori, S.; Shioda, S. (March 1974). "Stabilization of Ionization Instability in an MHD Generator" (PDF). Journal of the Physical Society of Japan. 36 (3): 920. Bibcode:1974JPSJ...36..920H. doi:10.1143/JPSJ.36.920.
  16. Petit, J.-P. (10 March 1972). "5: Magnetohydrodynamique" (PDF). Applications de la théorie cinétique des gaz à la physique des plasmas et à la dynamique des galaxies[Applications of the kinetic theory of gases to plasma physics and galactic dynamics] (Doctor of Science thesis) (in French). University of Provence. pp. 172–195. CNRS#6717.
  17. Shapiro, G. I.; Nelson, A. H. (12 April 1978). "Stabilization of ionization instability in a variable electric field". Pis'ma V Zhurnal Tekhnischeskoi Fiziki. 4 (12): 393–396. Bibcode:1978PZhTF...4..393S.
  18. Murakami, T.; Okuno, Y.; Yamasaki, H. (December 2005). "Suppression of ionization instability in a magnetohydrodynamic plasma by coupling with a radio-frequency electromagnetic field" (PDF). Applied Physics Letters. 86 (19): 191502–191502.3. Bibcode:2005ApPhL..86s1502M. doi:10.1063/1.1926410.
  19. Petit, J.-P.; Billiotte, M. (4 May 1981). "Méthode pour supprimer l'instabilité de Velikhov" [Method for suppressing the Velikhov instability](PDF). Comptes Rendus de l'Académie des Sciences. Série II (in French). 292: 1115–1118.
  20. Petit, J.-P.; Geffray, J. (June 2009). "Non equilibrium plasma instabilities" (PDF). Acta Physica Polonica A. 115 (6). Institute of Physics of the Polish Academy of Sciences: 1170–1173. Bibcode:2009AcPPA.115.1170P. doi:10.12693/APhysPolA.115.1170.
  21. Petit, J.-P.; Doré, J.-C. (2013). "Velikhov electrothermal instability cancellation by a modification of electrical conductivity value in a streamer by magnetic confinement". Acta Polytechnica. 53 (2): 219–222. doi: 10.14311/1765 . hdl: 10467/67041 .
  22. Petit, J.-P.; Geffray, J.; David, F. (October 2009). MHD Hypersonic Flow Control for Aerospace Applications. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference (HyTASP). Bremen, Germany: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2009-7348.