STAR detector

Last updated
STAR detector STAR Detector at Relativistic Heavy Ion Collider.jpg
STAR detector

The STAR detector (for Solenoidal Tracker at RHIC) is one of the four experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory, United States. [1] [2] [3]

Contents

The primary scientific objective of STAR is to study the formation and characteristics of the quark–gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. Detecting and understanding the QGP allows physicists to understand better the Universe in the seconds after the Big Bang, when the presently-observed symmetries (and asymmetries) of the Universe were established.

Unlike other physics experiments where a theoretical prediction can be tested directly by a single measurement, STAR must make use of a variety of simultaneous studies in order to draw strong conclusions about the QGP. This is due both to the complexity of the system formed in the high-energy nuclear collision and the unexplored landscape of the physics studied. STAR therefore consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows definitive statements to be made about the collision.

The physics of STAR

In the immediate aftermath of the Big Bang, the expanding matter was so hot and dense that protons and neutrons could not exist. Instead, the early universe comprised a plasma of quarks and gluons, which in today's cool universe are confined and exist only within composite particles (bound states) the hadrons, such as protons and neutrons. Collisions of heavy nuclei at sufficiently high energies allow physicists to study whether quarks and gluons become deconfined at high densities, and if so, what the properties of this matter (i.e. quark–gluon plasma) are.

In particular, STAR studies the collective expansion of the hot quark-gluon matter, such as the elliptic flow. This allows to extract the transport coefficients that characterize the quark-gluon matter, including the shear and bulk viscosity, and to investigate macroscopic quantum phenomena, such as the chiral magnetic effect.

Collaboration governance

The governance of STAR is via two branches: the institutional Council which is run by a Chairperson elected from the Council ranks, and elected Spokesperson(s) and their management team. The Spokesperson(s) represent the Collaboration in scientific, technical, and managerial concerns. The Council deals with general issues that concern the collaboration. Examples include the organization and governance of the Collaboration, adoption of bylaws and amendments thereto, the policy on admission of new members institutions to the Collaboration, and Policies for the Publication and Presentation of STAR Results.

The term of the office of the Council Chair is nominally two years. The Council elects, a Spokesperson or a team of two Spokespersons who then serve at the discretion of the Council. The normal term of office for the Spokesperson(s) is 3 years, and an individual is eligible to serve at most two consecutive terms as Spokesperson(s).

The elected Spokesperson(s) and their team of Deputies, and the Council Chairs of STAR are listed below. The Institute listed indicates the institute the person was at when they held the position.

Spokespersons

Council Chairpersons

See also

Related Research Articles

Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US. By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons, the spin structure of the proton is explored.

High-energy nuclear physics Intersection of nuclear physics and high-energy physics

High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.

Hadronization is the process of the formation of hadrons out of quarks and gluons. There are two main branches of hadronization: quark-gluon plasma (QGP) transformation and colour string decay into hadrons. The transformation of quark-gluon plasma into hadrons is studied in lattice QCD numerical simulations, which are explored in relativistic heavy-ion experiments. Quark-gluon plasma hadronization occurred shortly after the Big Bang when the quark–gluon plasma cooled down to the Hagedorn temperature when free quarks and gluons cannot exist. In string breaking new hadrons are forming out of quarks, antiquarks and sometimes gluons, spontaneously created from the vacuum.

Quark matter or QCD matter refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 are devoted to this topic.

ALICE experiment Detector experiments at the Large Hadron Collider

ALICE is one of eight detector experiments at the Large Hadron Collider at CERN. The other seven are: ATLAS, CMS, TOTEM, LHCb, LHCf, MoEDAL and FASER.

William Allen Zajc

William Allen Zajc is a U.S. physicist and the I.I. Rabi Professor of Physics at Columbia University in New York, USA, where he has worked since 1987.

In high-energy physics, jet quenching is a phenomenon that can occur in the collision of ultra-high-energy particles. In general, the collision of high-energy particles can produce jets of elementary particles that emerge from these collisions. Collisions of ultra-relativistic heavy-ion particle beams create a hot and dense medium comparable to the conditions in the early universe, and then these jets interact strongly with the medium, leading to a marked reduction of their energy. This energy reduction is called "jet quenching".

Quark–gluon plasma Phase of quantum chromodynamics (QCD)

Quark–gluon plasma or QGP is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by fourth power of temperature and many practically mass free quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

Johann Rafelski German-American theoretical physicist

Johann Rafelski is a German-American theoretical physicist. He is professor of Physics at The University of Arizona in Tucson, guest scientist at CERN (Geneva), and has been LMU-Excellent Guest Professor at the Ludwig Maximilian University of Munich in Munich, Germany.

Strangeness production in relativistic heavy ion collisions is a signature and a diagnostic tool of quark–gluon plasma (QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strangeness and charm typically approach chemical equilibrium in a dynamic evolution process. QGP is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium. The word plasma signals that color charged particles are able to move in the volume occupied by the plasma. The abundance of strange quarks is formed in pair-production processes in collisions between constituents of the plasma, creating the chemical abundance equilibrium. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.

Abdel Nasser Tawfik

Abdel Nasser Tawfik graduated from Assiut University in 1989, where he also completed his Master Degree (M.Sc.) in Theoretical Physics before his change to the Philipps University of Marburg, Germany for the Dr.rer.Nat. (Ph.D.) in High Energy Physics. In 2012 Tawfik earned his Doctor of Science Degree in Mathematics and Physics at the Uzbekistan National University. Dr. Tawfik is the Founder Director of the Egyptian Center For Theoretical Physics (ECTP), the Founder Director of the World Laboratory for Cosmology And Particle Physics (WLCAPP), and Research Director at the "ICSC – World Laboratory" in Geneva, Switzerland. Currently, Abdel Nasser Tawfik works as Math and Physics teacher at DEO, and jointly affiliated to Frankfurt Institute for Advanced Studies (FIAS) - Goethe Frankfurt University, Germany. He is the Spokesperson of the Federation for Egyptian Particle Scientists (FEPS) and Associate of the Nuclear Physics Institute of Uzbekistan Academy of Sciences. In 1998, he was awarded the DAAD-prize for “Hervorragende Leistungen ausländischer Studierender an den deutschen Hochschulen". At the 23rd General Meeting of TWAS held in Tianjin, China, on 18 September 2012, he was elected as Fellow of TWAS. Tawfik is the author of four books, and has published about 170 research papers in leading journals.

John Harris (physicist)

John William Harris is an American experimental high energy nuclear physicist and D. Allan Bromley Professor of Physics at Yale University. His research interests are focused on understanding high energy density QCD and the Quark-gluon plasma created in relativistic collisions of heavy ions. Dr. Harris collaborated on the original proposal to initiate a high energy heavy ion program at Cern in Geneva, Switzerland, has been actively involved in the CERN heavy ion program and was the founding spokesperson for the STAR collaboration at RHIC at Brookhaven National Laboratory in the U.S.

The PHENIX detector is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory, United States.

Sergei Voloshin is a Russian-American experimental high-energy nuclear physicist and Professor of Physics at Wayne State University. He is best known for his work on event-by-event physics in heavy ion collisions.

Bedangadas Mohanty is an Indian physicist specialising in experimental high energy physics, and is affiliated to National Institute of Science Education and Research, Bhubaneswar. He has been awarded the Infosys Prize in Physical Sciences for 2021 that was announced on 2 December 2021. He was awarded the Shanti Swarup Bhatnagar Prize for Science and Technology in 2015, the highest science award in India, in the physical sciences category. He has been elected as the fellow of the Indian National Science Academy, New Delhi, Indian Academy of Sciences, Bangalore and National Academy of Sciences, India. In 2020, he was elected as a fellow of American Physical Society.

Arthur M. Poskanzer was an experimental physicist, known for his pioneering work on relativistic nuclear collisions.

An electron–ion collider (EIC) is a type of particle accelerator collider designed to collide spin-polarized beams of electrons and ions, in order to study the properties of nuclear matter in detail via deep inelastic scattering. In 2012, a whitepaper was published, proposing the developing and building of an EIC accelerator, and in 2015, the Department of Energy Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in nuclear physics in the United States.

Helen Louise Caines is an Professor of Physics at Yale University. She studies the Quark–Gluon Plasma and is the co-spokesperson for the STAR experiment.

Olga Evdokimov is a Russian born professor of physics at the University of Illinois, Chicago (UIC). She is a High Energy Nuclear Physicist, who currently collaborates on two international experiments; the Solenoidal Tracker At RHIC (STAR) experiment at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Laboratory, Upton, New York and the Compact Muon Solenoid (CMS) experiment at the LHC, CERN, Geneva, Switzerland.

Claude Pruneau is a Canadian-American experimental high-energy nuclear physicist. He is a Professor of Physics at Wayne State University and the author of several books. He is best known for his work on particle correlation measurements in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

References

  1. Caines, Helen; et al. (STAR Collaboration) (2004). "An update from STAR—using strangeness to probe relativistic heavy ion collisions". Journal of Physics G: Nuclear and Particle Physics. 30 (1): S61–S73. Bibcode:2004JPhG...30S..61C. doi:10.1088/0954-3899/30/1/005. ISSN   0954-3899.
  2. STAR webpage
  3. STAR Lite, education and outreach

STAR experiment record on INSPIRE-HEP