Taylor state

Last updated

In plasma physics, a Taylor state is the minimum energy state of a plasma while the plasma is conserving magnetic flux. [1] This was first proposed by John Bryan Taylor in 1974 and he backed up this claim using data from the ZETA machine. [2]

Contents

A comparison of different Taylor States inside the Dynomak. Spheromak Formation In Dynomak - Model.png
A comparison of different Taylor States inside the Dynomak.

Taylor-States are critical to operating both the Dynomak and the Reversed field pinch - both run in a Taylor State.

Examples

In 1974, Dr. John B Taylor proposed that a spheromak could be formed by inducing a magnetic flux into a loop plasma. The plasma would then relax naturally into a spheromak also known as a Taylor State. [3] [4] This process worked if the plasma:

These claims were later checked by Marshall Rosenbluth in 1979. [5] In 1974, Dr. Taylor could only use results from the ZETA pinch device to back up these claims. But, since then, Taylor states have been formed in multiple machines including:

Derivation

Consider a closed, simply-connected, flux-conserving, perfectly conducting surface surrounding a plasma with negligible thermal energy ().

Since on . This implies that .

As discussed above, the plasma would relax towards a minimum energy state while conserving its magnetic helicity. Since the boundary is perfectly conducting, there cannot be any change in the associated flux. This implies and on .

We formulate a variational problem of minimizing the plasma energy while conserving magnetic helicity .

The variational problem is .

After some algebra this leads to the following constraint for the minimum energy state .

See also

Related Research Articles

<span class="mw-page-title-main">Plasma stability</span> Degree to which disturbing a plasma system at equilibrium will destabilize it

The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out.

In physics, a conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done by a conservative force is zero.

<span class="mw-page-title-main">Lamb shift</span> Difference in energy of hydrogenic atom electron states not predicted by the Dirac equation

In physics the Lamb shift, named after Willis Lamb, refers to an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift refers to a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.

In plasma physics, magnetic helicity is a measure of the linkage, twist, and writhe of a magnetic field. In ideal magnetohydrodynamics, magnetic helicity is conserved. When a magnetic field contains magnetic helicity, it tends to form large-scale structures from small-scale ones. This process can be referred to as an inverse transfer in Fourier space. This property of increasing the scale of structures makes magnetic helicity special, as three-dimensional turbulent flows in ordinary fluid mechanics tend to "destroy" structure, in the sense that large-scale vortices break up into smaller ones, until dissipating through viscous effects into heat. Through a parallel but inverted process, the opposite happens for magnetic vortices, where small helical structures with non-zero magnetic helicity combine and form large-scale magnetic fields. This is visible in the dynamics of the heliospheric current sheet, a large magnetic structure in the Solar System.

<span class="mw-page-title-main">Spheromak</span>

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.

The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

In theoretical physics, the Weinberg–Witten (WW) theorem, proved by Steven Weinberg and Edward Witten, states that massless particles (either composite or elementary) with spin j > 1/2 cannot carry a Lorentz-covariant current, while massless particles with spin j > 1 cannot carry a Lorentz-covariant stress-energy. The theorem is usually interpreted to mean that the graviton (j = 2) cannot be a composite particle in a relativistic quantum field theory.

<span class="mw-page-title-main">Flux tube</span> Tube-like region of space with constant magnet flux along its length

A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant.

<span class="mw-page-title-main">Pinch (plasma physics)</span> Compression of an electrically conducting filament by magnetic forces

A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.

<span class="mw-page-title-main">Sustained Spheromak Physics Experiment</span>

The Sustained Spheromak Physics Experiment (SSPX) is a program at Lawrence Livermore National Laboratory in the United States established to investigate spheromak plasma.

<span class="mw-page-title-main">Quantum vortex</span> Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

Trisops was an experimental machine for the study of magnetic confinement of plasmas with the ultimate goal of producing fusion power. The configuration was a variation of a compact toroid, a toroidal (doughnut-shaped) structure of plasma and magnetic fields with no coils penetrating the center. It lost funding in its original form in 1978.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

John Bryan Taylor is a British physicist known for his contributions to plasma physics and their application in the field of fusion energy. Notable among these is the development of the "Taylor state", describing a minimum-energy configuration that conserves magnetic helicity. Another development was his work on the ballooning transformation, which describes the motion of plasma in toroidal (donut) configurations, which are used in the fusion field. Taylor has also made contributions to the theory of the Earth's Dynamo, including the Taylor constraint.

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates.

<span class="mw-page-title-main">Dynomak</span>

Dynomak is a spheromak fusion reactor concept developed by the University of Washington using U.S. Department of Energy funding.

In ideal magnetohydrodynamics, Alfvén's theorem, or the frozen-in flux theorem, states that electrically conducting fluids and embedded magnetic fields are constrained to move together in the limit of large magnetic Reynolds numbers. It is named after Hannes Alfvén, who put the idea forward in 1943.

Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.

<span class="mw-page-title-main">Magnetic Thermodynamic Systems</span>

In thermodynamics and thermal physics, the theoretical formulation of magnetic systems entails expressing the behavior of the systems using the Laws of Thermodynamics. Common magnetic systems examined through the lens of Thermodynamics are ferromagnets and paramagnets as well as the ferromagnet to paramagnet phase transition. It is also possible to derive thermodynamic quantities in a generalized form for an arbitrary magnetic system using the formulation of magnetic work.

References

  1. Paul M. Bellan (2000). Spheromaks: A Practical Application of Magnetohydrodynamic dynamos and plasma self-organization. Imperial College Press. pp. 71–79. ISBN   978-1-86094-141-2.
  2. Taylor, J. Brian. "Relaxation of toroidal plasma and generation of reverse magnetic fields." Physical Review Letters 33.19 (1974): 1139.
  3. Bellan, Paul (2000). Spheromaks. Imperial College Press. ISBN 978-1-86094-141-2.
  4. Taylor, J. Brian. "Relaxation of toroidal plasma and generation of reverse magnetic fields." Physical Review Letters 33.19 (1974): 1139.
  5. Rosenbluth, M. N., and M. N. Bussac. "MHD stability of spheromak." Nuclear Fusion 19.4 (1979): 489
  6. JARBOE, T. R., WYSOCKI, F.J., FERNÁNDEZ, J.C., HENINS, I., MARKLIN, G.J., Phys. Fluids B 2 (1990) 1342-1346
  7. "Physics through the 1990s", National Academies Press, 1986, p. 198.
  8. WYSOCKI, F.J., FERNÁNDEZ, J.C., HENINS, I., JARBOE, T.R., MARKLIN, G.J., Phys. Rev. Letters 21 (1988) 2457-2460
  9. Wood, R. D., et al. "Particle control in the sustained spheromak physics experiment." Journal of nuclear materials 290 (2001): 513-517.
  10. Sieck, P. E., et al. "First Plasma Results from the HIT-SI Spheromak." APS Division of Plasma Physics Meeting Abstracts. Vol. 45. 2003.
  11. Sutherland, D. A., et al. "The dynomak: An advanced fusion reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies."