Decay heat

Last updated
RTG pellet glowing red due to the heat generated by the radioactive decay of plutonium-238 dioxide, after a thermal isolation test. Radioisotope thermoelectric generator plutonium pellet.jpg
RTG pellet glowing red due to the heat generated by the radioactive decay of plutonium-238 dioxide, after a thermal isolation test.

Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms.

Contents

Decay heat occurs naturally from decay of long-lived radioisotopes that are primordially present from the Earth's formation.

In nuclear reactor engineering, decay heat continues to be generated after the reactor has been shut down (see SCRAM and nuclear chain reactions) and power generation has been suspended. The decay of the short-lived radioisotopes such as iodine-131 created in fission continues at high power for a time after shut down. [1] The major source of heat production in a newly shut down reactor is due to the beta decay of new radioactive elements recently produced from fission fragments in the fission process.

Quantitatively, at the moment of reactor shutdown, decay heat from these radioactive sources is still 6.5% of the previous core power if the reactor has had a long and steady power history. About 1 hour after shutdown, the decay heat will be about 1.5% of the previous core power. After a day, the decay heat falls to 0.4%, and after a week, it will be only 0.2%. [2] Because radioisotopes of all half-life lengths are present in nuclear waste, enough decay heat continues to be produced in spent fuel rods to require them to spend a minimum of one year, and more typically 10 to 20 years, in a spent fuel pool of water before being further processed. However, the heat produced during this time is still only a small fraction (less than 10%) of the heat produced in the first week after shutdown. [1]

If no cooling system is working to remove the decay heat from a crippled and newly shut down reactor, the decay heat may cause the core of the reactor to reach unsafe temperatures within a few hours or days, depending upon the type of core. These extreme temperatures can lead to minor fuel damage (e.g. a few fuel particle failures (0.1 to 0.5%) in a graphite-moderated, gas-cooled design [3] ) or even major core structural damage (meltdown) in a light water reactor [4] or liquid metal fast reactor. Chemical species released from the damaged core material may lead to further explosive reactions (steam or hydrogen) which may further damage the reactor. [5]

Natural occurrence

Naturally occurring decay heat is a significant source of the heat in the interior of the Earth. Radioactive isotopes of uranium, thorium and potassium are the primary contributors to this decay heat, and this radioactive decay is the primary source of heat from which geothermal energy derives. [6]

Decay heat has significant importance in astrophysical phenomena. For example, the light curves of Type Ia supernovae are widely thought to be powered by the heating provided by radioactive products from the decay of nickel and cobalt into iron (Type Ia light curve).[ citation needed ]

Power reactors in shutdown

Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations Decay heat illustration2.PNG
Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations

In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7] An additional 23 MeV of energy are released at some time after fission from the beta decay of fission products. About 10 MeV of the energy released from the beta decay of fission products is in the form of neutrinos, and since neutrinos are very weakly interacting, this 10 MeV of energy will not be deposited in the reactor core. This results in 13 MeV (6.5% of the total fission energy) being deposited in the reactor core from delayed beta decay of fission products, at some time after any given fission reaction has occurred. In a steady state, this heat from delayed fission product beta decay contributes 6.5% of the normal reactor heat output.

When a nuclear reactor has been shut down, and nuclear fission is not occurring at a large scale, the major source of heat production will be due to the delayed beta decay of these fission products (which originated as fission fragments). For this reason, at the moment of reactor shutdown, decay heat will be about 6.5% of the previous core power if the reactor has had a long and steady power history. About 1 hour after shutdown, the decay heat will be about 1.5% of the previous core power. After a day, the decay heat falls to 0.4%, and after a week it will be only 0.2%. The decay heat production rate will continue to slowly decrease over time; the decay curve depends upon the proportions of the various fission products in the core and upon their respective half-lives. [8]  

An approximation for the decay heat curve valid from 10 seconds to 100 days after shutdown is

where is the time since reactor startup, is the power at time , is the reactor power before shutdown, and is the time of reactor shutdown measured from the time of startup (in seconds), so that is the elapsed time since shutdown. [9]

For an approach with a more direct physical basis, some models use the fundamental concept of radioactive decay. Used nuclear fuel contains a large number of different isotopes that contribute to decay heat, which are all subject to the radioactive decay law, so some models consider decay heat to be a sum of exponential functions with different decay constants and initial contribution to the heat rate. [10] A more accurate model would consider the effects of precursors, since many isotopes follow several steps in their radioactive decay chain, and the decay of daughter products will have a greater effect longer after shutdown.

The removal of the decay heat is a significant reactor safety concern, especially shortly after normal shutdown or following a loss-of-coolant accident. Failure to remove decay heat may cause the reactor core temperature to rise to dangerous levels and has caused nuclear accidents, including the nuclear accidents at Three Mile Island and Fukushima I. The heat removal is usually achieved through several redundant and diverse systems, from which heat is removed via heat exchangers. Water is passed through the secondary side of the heat exchanger via the essential service water system [11] which dissipates the heat into the 'ultimate heat sink', often a sea, river or large lake. In locations without a suitable body of water, the heat is dissipated into the air by recirculating the water via a cooling tower. The failure of ESWS circulating pumps was one of the factors that endangered safety during the 1999 Blayais Nuclear Power Plant flood.

Spent fuel

After one year, typical spent nuclear fuel generates about 10 kW of decay heat per tonne, decreasing to about 1 kW/t after ten years. [12] Hence effective active or passive cooling for spent nuclear fuel is required for a number of years.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear chain reaction</span> When one nuclear reaction causes more

In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Radioactive waste</span> Unusable radioactive materials

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

<span class="mw-page-title-main">Nuclear meltdown</span> Severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Radioisotope thermoelectric generator</span> Electrical generator that uses heat from radioactive decay

A radioisotope thermoelectric generator, sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts. Because they don't need solar energy, RTGs are ideal for remote and harsh environments for extended periods of time, and because they have no moving parts, there is no risk of parts wearing out or malfunctioning.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

<span class="mw-page-title-main">Loss-of-coolant accident</span> Form of nuclear reactor failure.

A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA.

In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products, any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10−14 seconds of the fission are termed "prompt neutrons".

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

<span class="mw-page-title-main">Plutonium-239</span> Isotope of plutonium

Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.

Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, 137
Cs
with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years, plutonium-242 with a half-life of 373,300 years, and plutonium-239 with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states; all have half-lives of less than one second.

<span class="mw-page-title-main">Nuclear reactor physics</span> Field of physics dealing with nuclear reactors

Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started.

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA or %FIFA as well as, preferably, the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

<span class="mw-page-title-main">Stable salt reactor</span>

The Stable Salt Reactor (SSR) is a nuclear reactor design under development by Moltex Energy Canada Inc. and its subsidiary Moltex Energy USA LLC, based in Canada, the United States, and the United Kingdom, as well as MoltexFLEX Ltd., based in the United Kingdom.

References

  1. 1 2 Ragheb, Magdi (15 Oct 2014). "Decay heat generation in fission reactors" (PDF). University of Illinois at Urbana-Champaign. Archived (PDF) from the original on 2022-01-30. Retrieved 24 March 2018.
  2. "Spent Fuel" (PDF). Argonne National Laboratory. April 2011. Archived from the original (PDF) on 4 March 2016. Retrieved 26 January 2013.
  3. "IAEA TECDOC 978: Fuel performance and fission product behaviour in gas cooled reactors" (PDF). International Atomic Energy Agency. 1997. Archived (PDF) from the original on 2022-01-30. Retrieved 2019-11-25.
  4. Lamarsh, John R.; Baratta, Anthony J. (2001). Introduction to Nuclear Engineering (3rd ed.). Prentice-Hall. Section 8.2. ISBN   0-201-82498-1.
  5. INSAG-7 The Chernobyl Accident: Updating of INSAG-1 (PDF). International Atomic Energy Agency. 1992. p. 20. Archived (PDF) from the original on 2021-04-25.
  6. "How Geothermal energy works". Union of Concerned Scientists. July 14, 2008. Archived from the original on 2022-09-01.
  7. DOE fundamentals handbook - Nuclear physics and reactor theory Archived 2009-04-18 at the Wayback Machine - volume 1 of 2, module 1, page 61
  8. Glasstone, Samuel; Sesonske, Alexander (31 October 1994). Nuclear Reactor Engineering: Reactor Systems Engineering - Samuel Glasstone, Alexander Sesonske - Google Books. ISBN   9780412985317 . Retrieved 2019-09-09.
  9. "Decay Heat Estimates for MNR" (PDF). February 23, 1999. Archived from the original (PDF) on 2022-08-05. Retrieved 2019-09-09.
  10. "Core Neutronics". Archived from the original on 2012-01-18. Retrieved 2011-03-30.
  11. "Pre-construction safety report - Sub-chapter 9.2 – Water Systems" (PDF). AREVA NP / EDF. 2009-06-29. Archived (PDF) from the original on 2022-10-19. Retrieved 2011-03-23.
  12. "Physics of Uranium and Nuclear Energy". world-nuclear.org. Archived from the original on 2019-11-05. - Some physics of uranium