P-nuclei

Last updated

p-nuclei (p stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process.

Contents

Definition

Part of the Chart of Nuclides showing some stable or nearly-stable s-, r-, and p-nuclei Srp-nuclei-en.svg
Part of the Chart of Nuclides showing some stable or nearly-stable s-, r-, and p-nuclei

The classical, ground-breaking works of Burbidge, Burbidge, Fowler and Hoyle (1957) [1] and of A. G. W. Cameron (1957) [2] showed how the majority of naturally occurring nuclides beyond the element iron can be made in two kinds of neutron capture processes, the s- and the r-process. Some proton-rich nuclides found in nature are not reached in these processes and therefore at least one additional process is required to synthesize them. These nuclei are called p-nuclei.

Since the definition of the p-nuclei depends on the current knowledge of the s- and r-process (see also nucleosynthesis), the original list of 35 p-nuclei may be modified over the years, as indicated in the Table below. For example, it is recognized today that the abundances of 152Gd and 164Er contain at least strong contributions from the s-process. [3] This also seems to apply to those of 113In and 115Sn, which additionally could be made in the r-process in small amounts. [4]

Natural occurrence

The long-lived radionuclides 92Nb, 97Tc, 98Tc, 146Sm, 150Gd, and 154Dy [5] are not among the classically defined p-nuclei as they no longer occur naturally on Earth. By the above definition, however, they are also p-nuclei because they cannot be made in either the s- or the r-process. From the discovery of their decay products in presolar grains it can be inferred that at least 92Nb and 146Sm were present in the solar nebula. This offers the possibility to estimate the time since the last production of these p-nuclei before the formation of the Solar System. [6]

p-nuclei are very rare. Those isotopes of an element which are p-nuclei are less abundant typically by factors of ten to one thousand than the other isotopes of the same element. The abundances of p-nuclei can only be determined in geochemical investigations and by analysis of meteoritic material and presolar grains. They cannot be identified in stellar spectra. Therefore, the knowledge of p-abundances is restricted to those of the Solar System and it is unknown whether the solar abundances of p-nuclei are typical for the Milky Way. [7]

List of p-nuclei

Nuclide Abundance Comment
74Se 0.86%Stable nuclide
78Kr 0.36%long-lived radionuclide (half-life 9.2×1021 y)
84Sr 0.56%Stable nuclide
92Nb trace long-lived radionuclide (half-life 3.47×107 y); not a classical p-nucleus but cannot be made in s- and r-processes
92Mo 14.65%Stable nuclide
94Mo 9.19%Stable nuclide
97Tc syn long-lived radionuclide (half-life 4.21×106 y); not a classical p-nucleus but cannot be made in s- and r-processes
98Tc synlong-lived radionuclide (half-life 4.2×106 y); not a classical p-nucleus but cannot be made in s- and r-processes
96Ru 5.54%Stable nuclide
98Ru 1.87%Stable nuclide
102Pd 1.02%Stable nuclide
106Cd 1.25%Stable nuclide
108Cd 0.89%Stable nuclide
113In 4.28%Stable nuclide; (partially) made in the s-process? Contributions from the r-process?
112Sn 0.97%Stable nuclide
114Sn 0.66%Stable nuclide
115Sn 0.34%Stable nuclide; (partially) made in the s-process? Contributions from the r-process?
120Te 0.09%Stable nuclide
124Xe 0.095%long-lived radionuclide (half-life 1.8×1022 y)
126Xe 0.089%Stable nuclide
130Ba 0.11%long-lived radionuclide (half-life 1.6×1021 y)
132Ba 0.10%Stable nuclide
138La 0.089%long-lived radionuclide (half-life 1.03×1011 y); made in the ν-process
136Ce 0.186%Stable nuclide
138Ce 0.251%Stable nuclide
144Sm 3.08%Stable nuclide
146Sm tracelong-lived radionuclide (half-life 9.20×107 y [8] ); not a classical p-nucleus but cannot be made in s- and r-processes
150Gd synlong-lived radionuclide (half-life 1.79×106 y); not a classical p-nucleus but cannot be made in s- and r-processes
152Gd 0.20%long-lived radionuclide (half-life 1.08×1014 y); (partially) made in the s-process?
154Dy synlong-lived radionuclide (half-life 1.40×106 y [9] ); not a classical p-nucleus but cannot be made in s- and r-processes
156Dy 0.056%Stable nuclide
158Dy 0.095%Stable nuclide
162Er 0.139%Stable nuclide
164Er 1.601%Stable nuclide; (partially) made in the s-process?
168Yb 0.126%Stable nuclide
174Hf 0.16%long-lived radionuclide (half-life 7.0×1016 y)
180mTa 0.012%Stable nuclide (the only stable nuclear isomer); (partially) made in the ν-process; contributions from the s-process?
180W 0.12%long-lived radionuclide (half-life 1.8×1018 y)
184Os 0.02%long-lived radionuclide (half-life 1.12×1013 y)
190Pt 0.012%long-lived radionuclide (half-life 4.83×1011 y [10] )
196Hg 0.15%Stable nuclide

Origin of the p-nuclei

The astrophysical production of p-nuclei is not completely understood yet. The favored γ-process (see below) in core-collapse supernovae cannot produce all p-nuclei in sufficient amounts, according to current computer simulations. This is why additional production mechanisms and astrophysical sites are under investigation, as outlined below. It is also conceivable that there is not just a single process responsible for all p-nuclei but that different processes in a number of astrophysical sites produce certain ranges of p-nuclei. [11]

In the search for the relevant processes creating p-nuclei, the usual way is to identify the possible production mechanisms (processes) and then to investigate their possible realization in various astrophysical sites. The same logic is applied in the discussion below.

Basics of p-nuclide production

In principle, there are two ways to produce proton-rich nuclides: by successively adding protons to a nuclide (these are nuclear reactions of type (p,γ)) or by removing neutrons from a nucleus through sequences of photodisintegrations of type (γ,n). [7] [11]

Under conditions encountered in astrophysical environments it is difficult to obtain p-nuclei through proton captures because the Coulomb barrier of a nucleus increases with increasing proton number. A proton requires more energy to be incorporated (captured) into an atomic nucleus when the Coulomb barrier is higher. The available average energy of the protons is determined by the temperature of the stellar plasma. Increasing the temperature, however, also speeds up the (γ,p) photodisintegrations which counteract the (p,γ) captures. The only alternative avoiding this would be to have a very large number of protons available so that the effective number of captures per second is large even at low temperature. In extreme cases (as discussed below) this leads to the synthesis of extremely short-lived radionuclides which decay to stable nuclides only after the captures cease. [7] [11]

Appropriate combinations of temperature and proton density of a stellar plasma have to be explored in the search of possible production mechanisms for p-nuclei. Further parameters are the time available for the nuclear processes, and number and type of initially present nuclides (seed nuclei).

Possible processes

The p-process

In a p-process it is suggested that p-nuclei were made through a few proton captures on stable nuclides. The seed nuclei originate from the s- and r-process and are already present in the stellar plasma. As outlined above, there are serious difficulties explaining all p-nuclei through such a process although it was originally suggested to achieve exactly this. [1] [2] [7] It was shown later that the required conditions are not reached in stars or stellar explosions. [12]

Based on its historical meaning, the term p-process is sometimes used for any process synthesizing p-nuclei, even when no proton captures are involved, but this usage is discouraged.

The γ-process

p-nuclei can also be obtained by photodisintegration of s-process and r-process nuclei. At temperatures around 2–3  gigakelvins (GK) and short process time of a few seconds (this requires an explosive process) photodisintegration of the pre-existing nuclei will remain small, just enough to produce the required tiny abundances of p-nuclei. [7] [13] This is called the γ-process (gamma process) because the photodisintegration proceeds by nuclear reactions of the types (γ,n), (γ,α) and (γ,p), which are caused by highly energetic photons (gamma rays). [13]

The ν-process (nu process)

If a sufficiently intensive source of neutrinos is available, nuclear reactions can directly produce certain nuclides, for example 7Li, 11B, 19F, 138La in core-collapse supernovae. [14]

Rapid proton capture processes

In a p-process protons are added to stable or weakly radioactive atomic nuclei. If there is a high proton density in the stellar plasma, even short-lived radionuclides can capture one or more protons before they beta decay. This quickly moves the nucleosynthesis path from the region of stable nuclei to the very proton-rich side of the chart of nuclides. This is called rapid proton capture. [11]

Here, a series of (p,γ) reactions proceeds until either the beta decay of a nucleus is faster than a further proton capture, or the proton drip line is reached. Both cases lead to one or several sequential beta decays until a nucleus is produced which again can capture protons before it beta decays. Then the proton capture sequences continue.

It is possible to cover the region of the lightest nuclei up to 56Ni within a second because both proton captures and beta decays are fast. Starting with 56Ni, however, a number of waiting points are encountered in the reaction path. These are nuclides which both have relatively long half-lives (compared to the process timescale) and can only slowly add another proton (that is, their cross section for (p,γ) reactions is small). Examples for such waiting points are: 56Ni, 60Zn, 64Ge, 68Se. Further waiting points may be important, depending on the detailed conditions and location of the reaction path. It is typical for such waiting points to show half-lives of minutes to days. Thus, they considerably increase the time required to continue the reaction sequences. If the conditions required for this rapid proton capture are only present for a short time (the timescale of explosive astrophysical events is of the order of seconds), the waiting points limit or hamper the continuation of the reactions to heavier nuclei. [15]

In order to produce p-nuclei, the process path has to encompass nuclides bearing the same mass number (but usually containing more protons) as the desired p-nuclei. These nuclides are then converted into p-nuclei through sequences of beta decays after the rapid proton captures ceased.

Variations of the main category rapid proton captures are the rp-, pn-, and νp-processes, which will be briefly outlined below.

The rp-process

The so-called rp-process (rp is for rapid proton capture) is the purest form of the rapid proton capture process described above. At proton densities of more than 1028 protons/cm3 and temperatures around 2×109 K, the reaction path is close to the proton drip line. [15] The waiting points can be bridged provided that the process time is 10–600 s. Waiting-point nuclides are produced with larger abundances while the production of nuclei "behind" each waiting point is increasingly suppressed.

A definitive endpoint is reached close to 104Te because the reaction path runs into a region of nuclides which decay preferably by alpha decay and thus loop the path back onto itself. [16] Therefore, an rp-process would only be able to produce p-nuclei with mass numbers less than or equal to 104.

The pn-process

The waiting points in rapid proton capture processes can be avoided by (n,p) reactions which are much faster than proton captures on or beta decays of waiting points nuclei. This results in a considerable reduction of the time required to build heavy elements and allows an efficient production within seconds. [7] This requires, however, a (small) supply of free neutrons which are usually not present in such proton-rich plasmas. One way to obtain them is to release them through other reactions occurring simultaneously as the rapid proton captures. This is called neutron-rich rapid proton capture or pn-process. [17]

The νp-process

Another possibility to obtain the neutrons required for the accelerating (n,p) reactions in proton-rich environments is to use the anti-neutrino capture on protons (
ν
e
+
p

e+
+
n
), turning a proton and an anti-neutrino into a positron and a neutron. Since (anti-)neutrinos interact only very weakly with protons, a high flux of anti-neutrinos has to act on a plasma with high proton density. This is called νp-process (nu p process). [18]

Possible synthesis sites

Core-collapse supernovae

Massive stars end their life in a core-collapse supernova. In such a supernova, a shockfront from an explosion runs from the center of the star through its outer layers and ejects these. When the shockfront reaches the O/Ne-shell of the star (see also stellar evolution), the conditions for a 𝛾-process are reached for 1-2 s.

Although the majority of p-nuclei can be made in this way, some mass regions of p-nuclei turn out to be problematic in model calculations. It has been known already for decades that p-nuclei with mass numbers A < 100 cannot be produced in a 𝛾-process. [7] [13] Modern simulations also show problems in the range 150 ≤ A ≤ 165. [11] [19]

The p-nucleus 138La is not produced in the 𝛾-process but it can be made in a ν-process. A hot neutron star is made in the center of such a core-collapse supernova and it radiates neutrinos with high intensity. The neutrinos interact also with the outer layers of the exploding star and cause nuclear reactions which create 138La, among other nuclei. [14] [19] Also 180mTa may receive a contribution from this ν-process.

It was suggested [18] to supplement the γ-process in the outer layers of the star by another process, occurring in the deepest layers of the star, close to the neutron star but still being ejected instead of falling onto the neutron star surface. Due to the initially high flow of neutrinos from the forming neutron star, these layers become extremely proton-rich through the reaction
ν
e
+
n

e
+
p
. Although the anti-neutrino flux is initially weaker a few neutrons will be created, nevertheless, because of the large number of protons. This allows a -process in these deep layers. Because of the short timescale of the explosion and the high Coulomb barrier of the heavier nuclei, such a νp-process could possibly only produce the lightest p-nuclei. Which nuclei are made and how much of them depends sensitively on many details in the simulations and also on the actual explosion mechanism of a core-collapse supernova, which still is not completely understood. [18] [20]

Thermonuclear supernovae

A thermonuclear supernova is the explosion of a white dwarf in a binary star system, triggered by thermonuclear reactions in matter from a companion star accreted on the surface of the white dwarf. The accreted matter is rich in hydrogen (protons) and helium (α particles) and becomes hot enough to allow nuclear reactions.

A number of models for such explosions are discussed in literature, of which two were explored regarding the prospect of producing p-nuclei. None of these explosions release neutrinos, therefore rendering ν- and νp-process impossible. Conditions required for the rp-process are also not attained.

Details of the possible production of p-nuclei in such supernovae depend sensitively on the composition of the matter accreted from the companion star (the seed nuclei for all subsequent processes). Since this can change considerably from star to star, all statements and models of p-production in thermonuclear supernovae are prone to large uncertainties. [7]

Type Ia supernovae

The consensus model of thermonuclear supernovae postulates that the white dwarf explodes after exceeding the Chandrasekhar limit by the accretion of matter because the contraction and heating ignites explosive carbon burning under degenerate conditions. A nuclear burning front runs through the white dwarf from the inside out and tears it apart. Then the outermost layers closely beneath the surface of the white dwarf (containing 0.05 solar masses of matter) exhibit the right conditions for a γ-process. [21]

The p-nuclei are made in the same way as in the γ-process in core-collapse supernovae and also the same difficulties are encountered. In addition, 138La and 180mTa are not produced. A variation of the seed abundances by assuming increased s-process abundances only scales the abundances of the resulting p-nuclei without curing the problems of relative underproduction in the nuclear mass ranges given above. [7]

subChandrasekhar supernovae

In a subclass of type Ia supernovae, the so-called subChandrasekhar supernova, the white dwarf may explode long before it reaches the Chandrasekhar limit because nuclear reactions in the accreted matter can already heat the white dwarf during its accretion phase and trigger explosive carbon burning prematurely. Helium-rich accretion favors this type of explosion. Helium burning ignites degeneratively on the bottom of the accreted helium layer and causes two shockfronts. The one running inwards ignites the carbon explosion. The outwards moving front heats the outer layers of the white dwarf and ejects them. Again, these outer layers are site to a γ-process at temperatures of 2-3 GK. Due to the presence of α particles (helium nuclei), however, additional nuclear reactions become possible. Among those are such which release a large number of neutrons, such as 18O(α,n)21Ne, 22Ne(α,n)25Mg, and 26Mg(α,n)29Si. This allows a pn-process in that part of the outer layers which experiences temperatures above 3 GK. [7] [17]

Those light p-nuclei which are underproduced in the γ-process can be so efficiently made in the pn-process that they even show much larger abundances than the other p-nuclei. To obtain the observed solar relative abundances, a strongly enhanced s-process seed (by factors of 100-1000 or more) has to be assumed which increases the yield of heavy p-nuclei from the γ-process. [7] [17]

Neutron stars in binary star systems

A neutron star in a binary star system can also accrete matter from the companion star on its surface. Combined hydrogen and helium burning ignites when the accreted layer of degenerate matter reaches a density of 105106 g/cm3 and a temperature exceeding 0.2 GK. This leads to thermonuclear burning comparable to what happens in the outwards moving shockfront of subChandrasekhar supernovae. The neutron star itself is not affected by the explosion and therefore the nuclear reactions in the accreted layer can proceed longer than in an explosion. This allows to establish an rp-process. It will continue until either all free protons are used up or the burning layer has expanded due to the increase in temperature and its density falls below the one required for the nuclear reactions. [15]

It was shown that the properties of X-ray bursts in the Milky Way can be explained by an rp-process on the surface of accreting neutron stars. [22] It remains unclear, yet, whether matter (and if, how much matter) can be ejected and escape the gravitational field of the neutron star. Only if this is the case can such objects be considered as possible sources of p-nuclei. Even if this is corroborated, the demonstrated endpoint of the rp-process limits the production to the light p-nuclei (which are underproduced in core-collapse supernovae). [16]

See also

Related Research Articles

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Big Bang nucleosynthesis</span> Process during the early universe

In physical cosmology, Big Bang nucleosynthesis is the production of nuclei other than those of the lightest isotope of hydrogen during the early phases of the universe. This type of nucleosynthesis is thought by most cosmologists to have occurred from 10 seconds to 20 minutes after the Big Bang. It is thought to be responsible for the formation of most of the universe's helium, along with small fractions of the hydrogen isotope deuterium, the helium isotope helium-3 (3He), and a very small fraction of the lithium isotope lithium-7 (7Li). In addition to these stable nuclei, two unstable or radioactive isotopes were produced: the heavy hydrogen isotope tritium and the beryllium isotope beryllium-7 (7Be). These unstable isotopes later decayed into 3He and 7Li, respectively, as above.

<span class="mw-page-title-main">Nucleosynthesis</span> Process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium remains small, so that the universe still has approximately the same composition.

<span class="mw-page-title-main">Stellar nucleosynthesis</span> Creation of chemical elements within stars

In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946, who later refined it in 1954. Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret and Geoffrey Burbidge, William Alfred Fowler and Fred Hoyle in their famous 1957 B2FH paper, which became one of the most heavily cited papers in astrophysics history.

<span class="mw-page-title-main">Alpha process</span> Nuclear fusion reaction

The alpha process, also known as alpha capture or the alpha ladder, is one of two classes of nuclear fusion reactions by which stars convert helium into heavier elements. The other class is a cycle of reactions called the triple-alpha process, which consumes only helium, and produces carbon. The alpha process most commonly occurs in massive stars and during supernovae.

In astrophysics, silicon burning is a very brief sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung–Russell diagram. It follows the previous stages of hydrogen, helium, carbon, neon and oxygen burning processes.

<i>r</i>-process Nucleosynthesis pathway

In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process. The r-process usually synthesizes the most neutron-rich stable isotopes of each heavy element. The r-process can typically synthesize the heaviest four isotopes of every heavy element; of these, the heavier two are called r-only nuclei because they are created exclusively via the r-process. Abundance peaks for the r-process occur near mass numbers A = 82, A = 130 and A = 196.

The slow neutron-capture process, or s-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The s-process is responsible for the creation (nucleosynthesis) of approximately half the atomic nuclei heavier than iron.

The term p-process (p for proton) is used in two ways in the scientific literature concerning the astrophysical origin of the elements (nucleosynthesis). Originally it referred to a proton capture process which was proposed to be the source of certain, naturally occurring, neutron-deficient isotopes of the elements from selenium to mercury. These nuclides are called p-nuclei and their origin is still not completely understood. Although it was shown that the originally suggested process cannot produce the p-nuclei, later on the term p-process was sometimes used to generally refer to any nucleosynthesis process supposed to be responsible for the p-nuclei.

Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.

Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from beyond Earth, ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons.

Naturally occurring nickel (28Ni) is composed of five stable isotopes; 58
Ni
, 60
Ni
, 61
Ni
, 62
Ni
and 64
Ni
, with 58
Ni
being the most abundant. 26 radioisotopes have been characterised with the most stable being 59
Ni
with a half-life of 76,000 years, 63
Ni
with a half-life of 100.1 years, and 56
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 8 meta states.

rp-process Process of nucleosynthesis

The rp-process consists of consecutive proton captures onto seed nuclei to produce heavier elements. It is a nucleosynthesis process and, along with the s-process and the r-process, may be responsible for the generation of many of the heavy elements present in the universe. However, it is notably different from the other processes mentioned in that it occurs on the proton-rich side of stability as opposed to on the neutron-rich side of stability. The end point of the rp-process is not yet well established, but recent research has indicated that in neutron stars it cannot progress beyond tellurium. The rp-process is inhibited by alpha decay, which puts an upper limit on the end point at 104Te, the lightest observed alpha-decaying nuclide, and the proton drip line in light antimony isotopes. At this point, further proton captures result in prompt proton emission or alpha emission, and thus the proton flux is consumed without yielding heavier elements; this end process is known as the tin–antimony–tellurium cycle.

<span class="mw-page-title-main">Nuclear astrophysics</span> Field of nuclear physics and astrophysics

Nuclear astrophysics is an interdisciplinary part of both nuclear physics and astrophysics, involving close collaboration among researchers in various subfields of each of these fields. This includes, notably, nuclear reactions and their rates as they occur in cosmic environments, and modeling of astrophysical objects where these nuclear reactions may occur, but also considerations of cosmic evolution of isotopic and elemental composition (often called chemical evolution). Constraints from observations involve multiple messengers, all across the electromagnetic spectrum (nuclear gamma-rays, X-rays, optical, and radio/sub-mm astronomy), as well as isotopic measurements of solar-system materials such as meteorites and their stardust inclusions, cosmic rays, material deposits on Earth and Moon). Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 109 K). Theories and simulations are essential parts herein, as cosmic nuclear reaction environments cannot be realized, but at best partially approximated by experiments. In general terms, nuclear astrophysics aims to understand the origin of the chemical elements and isotopes, and the role of nuclear energy generation, in cosmic sources such as stars, supernovae, novae, and violent binary-star interactions.

<span class="mw-page-title-main">Type II supernova</span> Explosion of a star 8 to 45 times the mass of the Sun

A Type II supernova or SNII results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.

<span class="mw-page-title-main">Photodisintegration</span> Disintegration of atomic nuclei from high-energy EM radiation

Photodisintegration is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. The reactions are called (γ,n), (γ,p), and (γ,α).

Nickel-62 is an isotope of nickel having 28 protons and 34 neutrons.

<span class="mw-page-title-main">Nuclear drip line</span> Atomic nuclei decay delimiter

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

James Michael Lattimer is a nuclear astrophysicist who works on the dense nuclear matter equation of state and neutron stars. He is currently a distinguished professor at Stony Brook University.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10 to 20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

References

  1. 1 2 E. M. Burbidge; G. R. Burbidge; W. A. Fowler; Fred Hoyle (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi: 10.1103/RevModPhys.29.547 .
  2. 1 2 Cameron, A. G. W. (1957). "Nuclear Reactions in Stars and Nucleogenesis". Publications of the Astronomical Society of the Pacific. 69 (408). IOP Publishing: 201-222. Bibcode:1957PASP...69..201C. doi:10.1086/127051. hdl: 2027/mdp.39015086541474 . ISSN   0004-6280. S2CID   122371100.
  3. Arlandini, Claudio; Kappeler, Franz; Wisshak, Klaus; Gallino, Roberto; Lugaro, Maria; et al. (1999-11-10). "Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures". The Astrophysical Journal. 525 (2). American Astronomical Society: 886–900. arXiv: astro-ph/9906266 . Bibcode:1999ApJ...525..886A. doi:10.1086/307938. ISSN   0004-637X. S2CID   10847307.
  4. Nemeth, Zs.; Kaeppeler, F.; Theis, C.; Belgya, T.; Yates, S. W. (1994). "Nucleosynthesis in the Cd-In-Sn region". The Astrophysical Journal. 426. American Astronomical Society: 357-365. Bibcode:1994ApJ...426..357N. doi:10.1086/174071. ISSN   0004-637X.
  5. Heinitz, Stephan; Kajan, Ivan; Schumann, Dorothea (21 April 2022). "How accurate are half-life data of long-lived radionuclides?". Radiochimica Acta. 110 (6–9): 589–608. doi:10.1515/ract-2021-1135 . Retrieved 20 August 2024.
  6. Dauphas, N.; Rauscher, T.; Marty, B.; Reisberg, L. (2003). "Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries". Nuclear Physics A. 719. Elsevier BV: C287–C295. arXiv: astro-ph/0211452 . Bibcode:2003NuPhA.719..287D. doi:10.1016/s0375-9474(03)00934-5. ISSN   0375-9474. S2CID   2328905.
  7. 1 2 3 4 5 6 7 8 9 10 11 Arnould, M.; Goriely, S. (2003). "The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status". Physics Reports. 384 (1–2). Elsevier BV: 1–84. Bibcode:2003PhR...384....1A. doi:10.1016/s0370-1573(03)00242-4. ISSN   0370-1573.
  8. Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1). doi: 10.1038/s41598-024-64104-6 . PMC   11294585 .
  9. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC. doi:10.1038/s41598-022-12684-6. ISSN   2045-2322.
  10. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  11. 1 2 3 4 5 T. Rauscher: Origin of p-Nuclei in Explosive Nucleosynthesis. In: Proceedings of Science XI_059.pdf PoS(NIC XI)059 [ permanent dead link ], 2010 (arXiv.org:1012.2213)
  12. Audouze, J.; Truran, J. W. (1975). "P-process nucleosynthesis in postshock supernova envelope environments". The Astrophysical Journal. 202. American Astronomical Society: 204-213. Bibcode:1975ApJ...202..204A. doi:10.1086/153965. ISSN   0004-637X.
  13. 1 2 3 Woosley, S. E.; Howard, W. M. (1978). "The p-process in supernovae". The Astrophysical Journal Supplement Series. 36. American Astronomical Society: 285-304. Bibcode:1978ApJS...36..285W. doi:10.1086/190501. ISSN   0067-0049.
  14. 1 2 Woosley, S. E.; Hartmann, D. H.; Hoffman, R. D.; Haxton, W. C. (1990). "The nu-process". The Astrophysical Journal. 356. American Astronomical Society: 272-301. Bibcode:1990ApJ...356..272W. doi:10.1086/168839. ISSN   0004-637X.
  15. 1 2 3 Schatz, H.; Aprahamian, A.; Görres, J.; Wiescher, M.; Rauscher, T.; et al. (1998). "rp-process nucleosynthesis at extreme temperature and density conditions". Physics Reports. 294 (4). Elsevier BV: 167–263. Bibcode:1998PhR...294..167S. doi: 10.1016/s0370-1573(97)00048-3 . ISSN   0370-1573.
  16. 1 2 Schatz, H.; Aprahamian, A.; Barnard, V.; Bildsten, L.; Cumming, A.; et al. (2001-04-16). "End Point of the rp Process on Accreting Neutron Stars". Physical Review Letters. 86 (16). American Physical Society (APS): 3471–3474. arXiv: astro-ph/0102418 . Bibcode:2001PhRvL..86.3471S. doi:10.1103/physrevlett.86.3471. ISSN   0031-9007. PMID   11328001. S2CID   46148449.
  17. 1 2 3 Goriely, S.; José, J.; Hernanz, M.; Rayet, M.; Arnould, M. (2002). "He-detonation in sub-Chandrasekhar CO white dwarfs: A new insight into energetics and p-process nucleosynthesis". Astronomy & Astrophysics. 383 (3). EDP Sciences: L27–L30. arXiv: astro-ph/0201199 . Bibcode:2002A&A...383L..27G. doi: 10.1051/0004-6361:20020088 . ISSN   0004-6361. S2CID   15894836.
  18. 1 2 3 Fröhlich, C.; Martínez-Pinedo, G.; Liebendörfer, M.; Thielemann, F.-K.; Bravo, E.; Hix, W. R.; Langanke, K.; Zinner, N. T. (2006-04-10). "Neutrino-Induced Nucleosynthesis of A>64 Nuclei: The νp Process". Physical Review Letters. 96 (14). American Physical Society (APS): 142502. arXiv: astro-ph/0511376 . Bibcode:2006PhRvL..96n2502F. doi:10.1103/physrevlett.96.142502. hdl: 2117/19199 . ISSN   0031-9007. PMID   16712066. S2CID   248401225.
  19. 1 2 Rauscher, T.; Heger, A.; Hoffman, R. D.; Woosley, S. E. (2002). "Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics". The Astrophysical Journal. 576 (1). American Astronomical Society: 323–348. arXiv: astro-ph/0112478 . Bibcode:2002ApJ...576..323R. doi:10.1086/341728. ISSN   0004-637X. S2CID   59039933.
  20. Frohlich, C.; Hauser, P.; Liebendorfer, M.; Martinez-Pinedo, G.; Thielemann, F.-K.; et al. (2006-01-20). "Composition of the Innermost Core-Collapse Supernova Ejecta". The Astrophysical Journal. 637 (1). American Astronomical Society: 415–426. arXiv: astro-ph/0410208 . Bibcode:2006ApJ...637..415F. doi:10.1086/498224. ISSN   0004-637X. S2CID   15902080.
  21. Howard, W. Michael; Meyer, Bradley S.; Woosley, S. E. (1991). "A new site for the astrophysical gamma-process". The Astrophysical Journal. 373. American Astronomical Society: L5-L8. Bibcode:1991ApJ...373L...5H. doi: 10.1086/186038 . ISSN   0004-637X.
  22. Woosley, S. E.; Heger, A.; Cumming, A.; Hoffman, R. D.; Pruet, J.; et al. (2004). "Models for Type I X-Ray Bursts with Improved Nuclear Physics". The Astrophysical Journal Supplement Series. 151 (1). American Astronomical Society: 75–102. arXiv: astro-ph/0307425 . Bibcode:2004ApJS..151...75W. doi:10.1086/381533. ISSN   0067-0049. S2CID   15179049.