Grazing-incidence small-angle scattering

Last updated

Grazing-incidence small-angle scattering (GISAS) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons (grazing-incidence small-angle X-ray scattering, GISAXS) or neutrons (grazing-incidence small-angle neutron scattering, GISANS). GISAS combines the accessible length scales of small-angle scattering (SAS: SAXS or SANS) and the surface sensitivity of grazing incidence diffraction (GID).

Contents

Geometry of a GISAS experiment. The incident beam strikes the sample under a small angle close to the critical angle of total external x-ray reflection. The intense reflected beam as well as the intense scattering in the incident plane are attenuated by a rod-shaped beam stop. The diffuse scattering from the sample (red arrow) is recorded with an area detector. As an example the scattering from a block copolymer film with perpendicular lamellae is shown in the detector plane. The two lobes of scattering correspond to the lateral lamellar period of about 80 nm. GISAXS.png
Geometry of a GISAS experiment. The incident beam strikes the sample under a small angle close to the critical angle of total external x-ray reflection. The intense reflected beam as well as the intense scattering in the incident plane are attenuated by a rod-shaped beam stop. The diffuse scattering from the sample (red arrow) is recorded with an area detector. As an example the scattering from a block copolymer film with perpendicular lamellae is shown in the detector plane. The two lobes of scattering correspond to the lateral lamellar period of about 80 nm.

Applications

A typical application of GISAS is the characterisation of self-assembly and self-organization on the nanoscale in thin films. Systems studied by GISAS include quantum dot arrays, [1] growth instabilities formed during in-situ growth, [2] self-organized nanostructures in thin films of block copolymers, [3] silica mesophases, [4] [5] and nanoparticles. [6] [7]

GISAXS was introduced by Levine and Cohen [8] to study the dewetting of gold deposited on a glass surface. The technique was further developed by Naudon [9] and coworkers to study metal agglomerates on surfaces and in buried interfaces. [10] With the advent of nanoscience other applications evolved quickly, first in hard matter such as the characterization of quantum dots on semiconductor surfaces and the in-situ characterization of metal deposits on oxide surfaces. This was soon to be followed by soft matter systems such as ultrathin polymer films, [11] polymer blends, block copolymer films and other self-organized nanostructured thin films that have become indispensable for nanoscience and technology. Future challenges of GISAS may lie in biological applications, such as proteins, peptides, or viruses attached to surfaces or in lipid layers.

Interpretation

As a hybrid technique, GISAS combines concepts from transmission small-angle scattering (SAS), from grazing-incidence diffraction (GID), and from diffuse reflectometry. From SAS it uses the form factors and structure factors. From GID it uses the scattering geometry close to the critical angles of substrate and film, and the two-dimensional character of the scattering, giving rise to diffuse rods of scattering intensity perpendicular to the surface. With diffuse (off-specular) reflectometry it shares phenomena like the Yoneda/Vinyard peak at the critical angle of the sample, and the scattering theory, the distorted wave Born approximation (DWBA). [12] [13] [14] However, while diffuse reflectivity remains confined to the incident plane (the plane given by the incident beam and the surface normal), GISAS explores the whole scattering from the surface in all directions, typically utilizing an area detector. Thus GISAS gains access to a wider range of lateral and vertical structures and, in particular, is sensitive to the morphology and preferential alignment of nanoscale objects at the surface or inside the thin film.

As a particular consequence of the DWBA, the refraction of x-rays or neutrons has to be always taken into account in the case of thin film studies, [15] [16] due to the fact that scattering angles are small, often less than 1 deg. The refraction correction applies to the perpendicular component of the scattering vector with respect to the substrate while the parallel component is unaffected. Thus parallel scattering can often be interpreted within the kinematic theory of SAS, while refractive corrections apply to the scattering along perpendicular cuts of the scattering image, for instance along a scattering rod.

In the interpretation of GISAS images some complication arises in the scattering from low-Z films e.g. organic materials on silicon wafers, when the incident angle is in between the critical angles of the film and the substrate. In this case, the reflected beam from the substrate has a similar strength as the incident beam and thus the scattering from the reflected beam from the film structure can give rise to a doubling of scattering features in the perpendicular direction. This as well as interference between the scattering from the direct and the reflected beam can be fully accounted for by the DWBA scattering theory. [16]

These complications are often more than offset by the fact that the dynamic enhancement of the scattering intensity is significant. In combination with the straightforward scattering geometry, where all relevant information is contained in a single scattering image, in-situ and real-time experiments are facilitated. Specifically self-organization during MBE growth [2] and re-organization processes in block copolymer films under the influence of solvent vapor [3] have been characterized on the relevant timescales ranging from seconds to minutes. Ultimately the time resolution is limited by the x-ray flux on the samples necessary to collect an image and the read-out time of the area detector.

Experimental practice

Dedicated or partially dedicated GISAXS beamlines exist at most synchrotron light sources (for instance Advanced Light Source (ALS), Australian Synchrotron, APS, ELETTRA (Italy), Diamond (UK), ESRF, National Synchrotron Light Source II (NSLS-II), Pohang Light Source (South Korea), SOLEIL (France), Shanghai Synchrotron (PR China), SSRL

At neutron research facilities, GISANS is increasingly used, typically on small-angle (SANS) instruments or on reflectometers.

GISAS does not require any specific sample preparation other than thin film deposition techniques. Film thicknesses may range from a few nm to several 100 nm, and such thin films are still fully penetrated by the x-ray beam. The film surface, the film interior, as well as the substrate-film interface are all accessible. By varying the incidence angle the various contributions can be identified.

Related Research Articles

In condensed matter physics and materials science, an amorphous solid is a solid that lacks the long-range order that is characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymously with amorphous solid; however, these terms refer specifically to amorphous materials that undergo a glass transition. Examples of amorphous solids include glasses, metallic glasses, and certain types of plastics and polymers.

<span class="mw-page-title-main">X-ray crystallography</span> Technique used for determining crystal structures and identifying mineral compounds

X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the positions of the atoms in the crystal can be determined, as well as their chemical bonds, crystallographic disorder, and various other information.

<span class="mw-page-title-main">Surface science</span> Study of physical and chemical phenomena that occur at the interface of two phases

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

<span class="mw-page-title-main">Neutron diffraction</span> Technique to investigate atomic structures using neutron scattering

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

<span class="mw-page-title-main">Copolymer</span> Polymer derived from more than one species of monomer

In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.

<span class="mw-page-title-main">Biological small-angle scattering</span>

Biological small-angle scattering is a small-angle scattering method for structure analysis of biological materials. Small-angle scattering is used to study the structure of a variety of objects such as solutions of biological macromolecules, nanocomposites, alloys, and synthetic polymers. Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are the two complementary techniques known jointly as small-angle scattering (SAS). SAS is an analogous method to X-ray and neutron diffraction, wide angle X-ray scattering, as well as to static light scattering. In contrast to other X-ray and neutron scattering methods, SAS yields information on the sizes and shapes of both crystalline and non-crystalline particles. When used to study biological materials, which are very often in aqueous solution, the scattering pattern is orientation averaged.

<span class="mw-page-title-main">Powder diffraction</span> Experimental method in X-ray diffraction

Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

<span class="mw-page-title-main">X-ray reflectivity</span>

X-ray reflectivity is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers. It is a form of reflectometry based on the use of X-rays and is related to the techniques of neutron reflectometry and ellipsometry.

X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.

<span class="mw-page-title-main">Dynamical theory of diffraction</span>

The dynamical theory of diffraction describes the interaction of waves with a regular lattice. The wave fields traditionally described are X-rays, neutrons or electrons and the regular lattice are atomic crystal structures or nanometer-scale multi-layers or self-arranged systems. In a wider sense, similar treatment is related to the interaction of light with optical band-gap materials or related wave problems in acoustics. The sections below deal with dynamical diffraction of X-rays.

Grazing incidence diffraction (GID) is a technique for interrogating a material using small incidence angles for an incoming wave, often leading to the diffraction being surface sensitive. It occurs in many different areas:

<span class="mw-page-title-main">Neutron reflectometry</span>

Neutron reflectometry is a neutron diffraction technique for measuring the structure of thin films, similar to the often complementary techniques of X-ray reflectivity and ellipsometry. The technique provides valuable information over a wide variety of scientific and technological applications including chemical aggregation, polymer and surfactant adsorption, structure of thin film magnetic systems, biological membranes, etc.

Diffraction topography is a imaging technique based on Bragg diffraction. Diffraction topographic images ("topographies") record the intensity profile of a beam of X-rays diffracted by a crystal. A topography thus represents a two-dimensional spatial intensity mapping of reflected X-rays, i.e. the spatial fine structure of a Laue reflection. This intensity mapping reflects the distribution of scattering power inside the crystal; topographs therefore reveal the irregularities in a non-ideal crystal lattice. X-ray diffraction topography is one variant of X-ray imaging, making use of diffraction contrast rather than absorption contrast which is usually used in radiography and computed tomography (CT). Topography is exploited to a lesser extends with neutrons, and has similarities to dark field imaging in the electron microscope community.

<span class="mw-page-title-main">Neutron supermirror</span>

A neutron supermirror is a highly polished, layered material used to reflect neutron beams. Supermirrors are a special case of multi-layer neutron reflectors with varying layer thicknesses.

Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes, characteristic distances of partially ordered materials, and much more. This is achieved by analyzing the elastic scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles. It belongs to the family of small-angle scattering (SAS) techniques along with small-angle neutron scattering, and is typically done using hard X-rays with a wavelength of 0.07 – 0.2 nm. Depending on the angular range in which a clear scattering signal can be recorded, SAXS is capable of delivering structural information of dimensions between 1 and 100 nm, and of repeat distances in partially ordered systems of up to 150 nm. USAXS can resolve even larger dimensions, as the smaller the recorded angle, the larger the object dimensions that are probed.

Neutron microscopes use neutrons to create images by nuclear fission of lithium-6 using small-angle neutron scattering. Neutrons also have no electric charge, enabling them to penetrate substances to gain information about structure that is not accessible through other forms of microscopy. As of 2013, neutron microscopes offered four-fold magnification and 10-20 times better illumination than pinhole neutron cameras. The system increases the signal rate at least 50-fold.

Neutrons are spin 1/2 particles that interact with magnetic induction fields via the Zeeman interaction. This interaction is both rather large and simple to describe. Several neutron scattering techniques have been developed to use thermal neutrons to characterize magnetic micro and nanostructures.

References

  1. Metzger, T.H.; Kegel, I.; Paniago, R.; Lorke, A.; Peisl, J.; et al. (1998). "Shape, size, strain and correlations in quantum dot systems studied by grazing incidence X-ray scattering methods". Thin Solid Films. Elsevier BV. 336 (1–2): 1–8. Bibcode:1998TSF...336....1M. doi:10.1016/s0040-6090(98)01290-5. ISSN   0040-6090.
  2. 1 2 Renaud, G.; Lazzari, Rémi; Revenant, Christine; Barbier, Antoine; Noblet, Marion; et al. (2003-05-30). "Real-Time Monitoring of Growing Nanoparticles". Science. American Association for the Advancement of Science (AAAS). 300 (5624): 1416–1419. Bibcode:2003Sci...300.1416R. doi:10.1126/science.1082146. ISSN   0036-8075. PMID   12775836. S2CID   7244337.
  3. 1 2 Smilgies, Detlef‐M.; Busch, Peter; Papadakis, Christine M.; Posselt, Dorthe (2002). "Characterization of polymer thin films with small‐angle X‐ray scattering under grazing incidence (GISAXS)". Synchrotron Radiation News. Informa UK Limited. 15 (5): 35–42. doi:10.1080/08940880208602975. ISSN   0894-0886. S2CID   122797468.
  4. Gibaud, A.; Grosso, D.; Smarsly, B.; Baptiste, A.; Bardeau, J. F.; Babonneau, F.; Doshi, D. A.; Chen, Z.; Brinker, C. Jeffrey; Sanchez, C. (2003). "Evaporation-Controlled Self-Assembly of Silica Surfactant Mesophases". The Journal of Physical Chemistry B. American Chemical Society (ACS). 107 (25): 6114–6118. doi:10.1021/jp027612l. ISSN   1520-6106.
  5. Chatterjee, P.; Hazra, S.; Amenitsch, H. (2012). "Substrate and drying effect in shape and ordering of micelles inside CTAB–silica mesostructured films". Soft Matter. Royal Society of Chemistry (RSC). 8 (10): 2956. Bibcode:2012SMat....8.2956C. doi:10.1039/c2sm06982b. ISSN   1744-683X. S2CID   98053328.
  6. Hazra, S.; Gibaud, A.; Sella, C. (2004-07-19). "Tunable absorption of Au–Al2O3 nanocermet thin films and its morphology". Applied Physics Letters. AIP Publishing. 85 (3): 395–397. Bibcode:2004ApPhL..85..395H. doi:10.1063/1.1774250. ISSN   0003-6951.
  7. Saunders, Aaron E.; Ghezelbash, Ali; Smilgies, Detlef-M.; Sigman, Michael B.; Korgel, Brian A. (2006). "Columnar Self-Assembly of Colloidal Nanodisks". Nano Letters. American Chemical Society (ACS). 6 (12): 2959–2963. Bibcode:2006NanoL...6.2959S. doi:10.1021/nl062419e. ISSN   1530-6984. PMID   17163739.
  8. Levine, J. R.; Cohen, J. B.; Chung, Y. W.; Georgopoulos, P. (1989-12-01). "Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth". Journal of Applied Crystallography. International Union of Crystallography (IUCr). 22 (6): 528–532. doi:10.1107/s002188988900717x. ISSN   0021-8898.
  9. A. Naudon in H. Brumberger (ed.): "Modern Aspects of Small-Angle Scattering", (Kluwer Academic Publishers, Amsterdam, 1995), p. 191.
  10. Hazra, S; Gibaud, A; Désert, A; Sella, C; Naudon, A (2000). "Morphology of nanocermet thin films: X-ray scattering study". Physica B: Condensed Matter. Elsevier BV. 283 (1–3): 97–102. Bibcode:2000PhyB..283...97H. doi:10.1016/s0921-4526(99)01899-2. ISSN   0921-4526.
  11. Gutmann, J.S.; Müller-Buschbaum, P.; Schubert, D.W.; Stribeck, N.; Smilgies, D.; Stamm, M. (2000). "Roughness correlations in ultra-thin polymer blend films". Physica B: Condensed Matter. Elsevier BV. 283 (1–3): 40–44. Bibcode:2000PhyB..283...40G. doi:10.1016/s0921-4526(99)01888-8. ISSN   0921-4526.(Proceedings of SXNS–6)
  12. Sinha, S. K.; Sirota, E. B.; Garoff, S.; Stanley, H. B. (1988-08-01). "X-ray and neutron scattering from rough surfaces". Physical Review B. American Physical Society (APS). 38 (4): 2297–2311. Bibcode:1988PhRvB..38.2297S. doi:10.1103/physrevb.38.2297. ISSN   0163-1829. PMID   9946532.
  13. Rauscher, M.; Salditt, T.; Spohn, H. (1995-12-15). "Small-angle x-ray scattering under grazing incidence: The cross section in the distorted-wave Born approximation". Physical Review B. American Physical Society (APS). 52 (23): 16855–16863. Bibcode:1995PhRvB..5216855R. doi:10.1103/physrevb.52.16855. ISSN   0163-1829. PMID   9981092.
  14. Lazzari, Rémi (2002-07-18). "IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands". Journal of Applied Crystallography. International Union of Crystallography (IUCr). 35 (4): 406–421. doi:10.1107/s0021889802006088. ISSN   0021-8898.
  15. Lee, Byeongdu; Park, Insun; Yoon, Jinhwan; Park, Soojin; Kim, Jehan; Kim, Kwang-Woo; Chang, Taihyun; Ree, Moonhor (2005). "Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering". Macromolecules. American Chemical Society (ACS). 38 (10): 4311–4323. Bibcode:2005MaMol..38.4311L. doi:10.1021/ma047562d. ISSN   0024-9297.
  16. 1 2 Busch, P.; Rauscher, M.; Smilgies, D.-M.; Posselt, D.; Papadakis, C. M. (2006-05-10). "Grazing-incidence small-angle X-ray scattering from thin polymer films with lamellar structures – the scattering cross section in the distorted-wave Born approximation". Journal of Applied Crystallography. International Union of Crystallography (IUCr). 39 (3): 433–442. doi:10.1107/s0021889806012337. ISSN   0021-8898.