Calcite sea

Last updated
The alternation of calcite and aragonite seas through geologic time CalciteAragonite.jpg
The alternation of calcite and aragonite seas through geologic time

A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic (including today) are characterized by aragonite seas. [1] [2] [3] [4] [5] [6]

Jurassic hardground with encrusting oysters and borings CarmelHdgd.jpg
Jurassic hardground with encrusting oysters and borings

The most significant geological and biological effects of calcite sea conditions include rapid and widespread formation of carbonate hardgrounds, [7] [8] [9] calcitic ooids, [10] [1] calcite cements, [2] and the contemporaneous dissolution of aragonite shells in shallow warm seas. [11] [6] Hardgrounds were very common, for example, in the calcite seas of the Ordovician and Jurassic, but virtually absent from the aragonite seas of the Permian. [7]

Fossils of invertebrate organisms found in calcite sea deposits are usually dominated by either thick calcite shells and skeletons, [12] [13] [14] [15] were infaunal and/or had thick periostraca, [16] or had an inner shell of aragonite and an outer shell of calcite. [17] This was apparently because aragonite dissolved quickly on the seafloor and had to be either avoided or protected as a biomineral. [6]

Calcite seas were coincident with times of rapid seafloor spreading and global greenhouse climate conditions. [14] Seafloor spreading centers cycle seawater through hydrothermal vents, reducing the ratio of magnesium to calcium in the seawater through metamorphism of calcium-rich minerals in basalt to magnesium-rich clays. [2] [5] This reduction in the Mg/Ca ratio favors the precipitation of calcite over aragonite. Increased seafloor spreading also means increased volcanism and elevated levels of carbon dioxide in the atmosphere and oceans. This may also have an effect on which polymorph of calcium carbonate is precipitated. [5] Further, high calcium concentrations of seawater favor the burial of CaCO3, thereby removing alkalinity from the ocean, lowering seawater pH and reducing its acid/base buffering. [18]

Related Research Articles

<span class="mw-page-title-main">Limestone</span> Sedimentary rocks made of calcium carbonate

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

The Ordovician is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 million years ago (Mya) to the start of the Silurian Period 443.8 Mya.

<span class="mw-page-title-main">Calcite</span> Calcium carbonate mineral

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite and is the main component of eggshells, gastropod shells, shellfish skeletons and pearls. Things containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is created when calcium ions in hard water react with carbonate ions to create limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

<span class="mw-page-title-main">Exoskeleton</span> External skeleton of an organism

An exoskeleton is an external skeleton that supports and protects an animal's body, in contrast to an internal skeleton (endoskeleton) in for example, a human. In usage, some of the larger kinds of exoskeletons are known as "shells". Examples of exoskeletons within animals include the arthropod exoskeleton shared by chelicerates, myriapods, crustaceans, and insects, as well as the shell of certain sponges and the mollusc shell shared by snails, clams, tusk shells, chitons and nautilus. Some animals, such as the turtle, have both an endoskeleton and an exoskeleton.

<span class="mw-page-title-main">Lysocline</span> Depth in the ocean below which the rate of dissolution of calcite increases dramatically

The lysocline is the depth in the ocean dependent upon the carbonate compensation depth (CCD), usually around 3.5 km, below which the rate of dissolution of calcite increases dramatically because of a pressure effect. While the lysocline is the upper bound of this transition zone of calcite saturation, the CCD is the lower bound of this zone.

<span class="mw-page-title-main">Aragonite</span> Calcium carbonate mineral

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

<span class="mw-page-title-main">Ooid</span> Small sedimentary grain that forms on shallow tropical seabeds

Ooids are small, spheroidal, "coated" (layered) sedimentary grains, usually composed of calcium carbonate, but sometimes made up of iron- or phosphate-based minerals. Ooids usually form on the sea floor, most commonly in shallow tropical seas. After being buried under additional sediment, these ooid grains can be cemented together to form a sedimentary rock called an oolite. Oolites usually consist of calcium carbonate; these belong to the limestone rock family. Pisoids are similar to ooids, but are larger than 2 mm in diameter, often considerably larger, as with the pisoids in the hot springs at Carlsbad in the Czech Republic.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite rock from limestone was Belsazar Hacquet in 1778.

<span class="mw-page-title-main">Bioerosion</span> Erosion of hard substrates by living organisms

Bioerosion describes the breakdown of hard ocean substrates – and less often terrestrial substrates – by living organisms. Marine bioerosion can be caused by mollusks, polychaete worms, phoronids, sponges, crustaceans, echinoids, and fish; it can occur on coastlines, on coral reefs, and on ships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed by pioneer plants or plant-like organisms such as lichen, and mostly chemical or mechanical in nature.

<span class="mw-page-title-main">Mid-ocean ridge</span> Basaltic underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.

Carbonate compensation depth (CCD) is the depth in the oceans below which the rate of supply of calcite lags behind the rate of solvation, such that no calcite is preserved. Shells of animals therefore dissolve and carbonate particles may not accumulate in the sediments on the sea floor below this depth. Aragonite compensation depth describes the same behaviour in reference to aragonitic carbonates. Aragonite is more soluble than calcite, so the aragonite compensation depth is generally shallower than the calcite compensation depth.

<span class="mw-page-title-main">Carbonate hardgrounds</span>

Carbonate hardgrounds are surfaces of synsedimentarily cemented carbonate layers that have been exposed on the seafloor. A hardground is essentially, then, a lithified seafloor. Ancient hardgrounds are found in limestone sequences and distinguished from later-lithified sediments by evidence of exposure to normal marine waters. This evidence can consist of encrusting marine organisms, borings of organisms produced through bioerosion, early marine calcite cements, or extensive surfaces mineralized by iron oxides or calcium phosphates. Modern hardgrounds are usually detected by sounding in shallow water or through remote sensing techniques like side-scan sonar.

<span class="mw-page-title-main">Aragonite sea</span> Chemical conditions of the sea favouring aragonite deposition

An aragonite sea contains aragonite and high-magnesium calcite as the primary inorganic calcium carbonate precipitates. The chemical conditions of the seawater must be notably high in magnesium content relative to calcium for an aragonite sea to form. This is in contrast to a calcite sea in which seawater low in magnesium content relative to calcium favors the formation of low-magnesium calcite as the primary inorganic marine calcium carbonate precipitate.

Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The field of chemical oceanography studies the chemistry of marine environments including the influences of different variables. Marine life has adapted to the chemistries unique to earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

<span class="mw-page-title-main">Shallow water marine environment</span>

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

<span class="mw-page-title-main">Shell growth in estuaries</span>

Shell growth in estuaries is an aspect of marine biology that has attracted a number of scientific research studies. Many groups of marine organisms produce calcified exoskeletons, commonly known as shells, hard calcium carbonate structures which the organisms rely on for various specialized structural and defensive purposes. The rate at which these shells form is greatly influenced by physical and chemical characteristics of the water in which these organisms live. Estuaries are dynamic habitats which expose their inhabitants to a wide array of rapidly changing physical conditions, exaggerating the differences in physical and chemical properties of the water.

<span class="mw-page-title-main">Lawrence Alexander Hardie</span> American geologist (1933–2013)

Lawrence Alexander Hardie was an American geologist, sedimentologist, and geochemist.

<span class="mw-page-title-main">Calcium cycle</span>

The calcium cycle is a transfer of calcium between dissolved and solid phases. There is a continuous supply of calcium ions into waterways from rocks, organisms, and soils. Calcium ions are consumed and removed from aqueous environments as they react to form insoluble structures such as calcium carbonate and calcium silicate, which can deposit to form sediments or the exoskeletons of organisms. Calcium ions can also be utilized biologically, as calcium is essential to biological functions such as the production of bones and teeth or cellular function. The calcium cycle is a common thread between terrestrial, marine, geological, and biological processes. Calcium moves through these different media as it cycles throughout the Earth. The marine calcium cycle is affected by changing atmospheric carbon dioxide due to ocean acidification.

<span class="mw-page-title-main">Particulate inorganic carbon</span>

Particulate inorganic carbon (PIC) can be contrasted with dissolved inorganic carbon (DIC), the other form of inorganic carbon found in the ocean. These distinctions are important in chemical oceanography. Particulate inorganic carbon is sometimes called suspended inorganic carbon. In operational terms, it is defined as the inorganic carbon in particulate form that is too large to pass through the filter used to separate dissolved inorganic carbon.

References

  1. 1 2 Wilkinson, B.H.; Owen, R.M.; Carroll, A.R. (1985). "Submarine hydrothermal weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine oolites". Journal of Sedimentary Petrology. 55: 171–183. doi:10.1306/212f8657-2b24-11d7-8648000102c1865d.
  2. 1 2 3 Wilkinson, B.H.; Given, K.R. (1986). "Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios". Journal of Geology. 94 (3): 321–333. Bibcode:1986JG.....94..321W. doi:10.1086/629032. S2CID   128840375.
  3. Morse, J.W.; Mackenzie, F.T. (1990). "Geochemistry of sedimentary carbonates". Developments in Sedimentology. 48: 1–707. doi:10.1016/S0070-4571(08)70330-3.
  4. Hardie , Lawrence A (1996). "Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my". Geology. Geological Society of America. 24 (3): 279–283. Bibcode:1996Geo....24..279H. doi:10.1130/0091-7613(1996)024<0279:svisca>2.3.co;2.
  5. 1 2 3 Lowenstein, T.K.; Timofeeff, M.N.; Brennan, S.T.; Hardie, L.A.; Demicco, R.V. (2001). "Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions". Science. 294 (5544): 1086–1088. Bibcode:2001Sci...294.1086L. doi:10.1126/science.1064280. PMID   11691988. S2CID   2680231.
  6. 1 2 3 Palmer, T.J.; Wilson, M.A. (2004). "Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas". Lethaia. 37 (4): 417–427 . doi:10.1080/00241160410002135.
  7. 1 2 Palmer, T.J. (1982). "Cambrian to Cretaceous changes in hardground communities". Lethaia. 15 (4): 309–323. doi:10.1111/j.1502-3931.1982.tb01696.x.
  8. Palmer, T.J.; Hudson, J.D.; Wilson, M.A. (1988). "Palaeoecological evidence for early aragonite dissolution in ancient calcite seas". Nature. 335 (6193): 809–810. Bibcode:1988Natur.335..809P. doi:10.1038/335809a0. S2CID   4280692.
  9. Wilson, M.A.; Palmer, T.J. (1992). "Hardgrounds and hardground faunas". University of Wales, Aberystwyth, Institute of Earth Studies Publications. 9: 1–131.
  10. Sandberg, P.A. (1983). "An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy". Nature. 305 (5929): 19–22. Bibcode:1983Natur.305...19S. doi:10.1038/305019a0. S2CID   4368105.
  11. Cherns, L.; Wright, V.P. (2000). "Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian Sea". Geology. 28 (9): 791–794. Bibcode:2000Geo....28..791C. doi:10.1130/0091-7613(2000)28<791:MMAEOL>2.0.CO;2.
  12. Wilkinson, B.H. (1979). "Biomineralization, paleooceanography, and the evolution of calcareous marine organisms". Geology. 7 (11): 524–527. Bibcode:1979Geo.....7..524W. doi:10.1130/0091-7613(1979)7<524:BPATEO>2.0.CO;2.
  13. Stanley, S.M.; Hardie, L.A. (1998). "Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry". Palaeogeography, Palaeoclimatology, Palaeoecology. 144 (1–2): 3–19. Bibcode:1998PPP...144....3S. doi: 10.1016/S0031-0182(98)00109-6 .
  14. 1 2 Stanley, S.M.; Hardie, L.A. (1999). "Hypercalcification; paleontology links plate tectonics and geochemistry to sedimentology". GSA Today. 9: 1–7.
  15. Porter, S.M. (2007). "Seawater chemistry and early carbonate biomineralization". Science. 316 (5829): 1302–1304. Bibcode:2007Sci...316.1302P. doi:10.1126/science.1137284. PMID   17540895. S2CID   27418253.
  16. Pojeta, J. Jr. (1988). "Review of Ordovician pelecypods". U.S. Geological Survey Professional Paper. 1044: 1–46.
  17. Harper, E.M.; Palmer, T.J.; Alphey, J.R. (1997). "Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry". Geological Magazine. 134 (3): 403–407. Bibcode:1997GeoM..134..403H. doi:10.1017/S0016756897007061. S2CID   140646397.
  18. Hain, Mathis P.; Sigman, Daniel M.; Higgins, John A.; Haug, Gerald H. (2015). "The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering" (PDF). Global Biogeochemical Cycles. 29 (5): 517–533. Bibcode:2015GBioC..29..517H. doi:10.1002/2014GB004986. ISSN   0886-6236. S2CID   53459924.