Scott Doney

Last updated

Scott Christopher Doney
Alma mater Massachusetts Institute of Technology
Woods Hole Oceanographic Institution
Scientific career
Institutions University of Virginia
Thesis A study of North Atlantic ventilation using transient tracers  (1991)
Doctoral advisor William J. Jenkins

Scott Doney is a marine scientist at the University of Virginia known for his work on biogeochemical modeling. Doney is the Joe D. and Helen J. Kington Professor in Environmental Change, [1] a fellow of the American Geophysical Union, [2] the American Association for the Advancement of Science. [3] , and the Association for the Sciences of Limnology and Oceanography. He served from 2022 to 2024 as the Assistant Director for Ocean Climate Science and Policy in the White House Office of Science and Technology Policy. [4]

Contents

Education and career

Doney has a B.A. in chemistry from the University of California at San Diego and earned his Ph.D. in 1991 from the Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program. [5] He moved to the National Center for Atmospheric Research (NCAR) where he started a postdoctoral fellowship in 1991. In 1993 he joined the science staff at NCAR, and remained there until he moved to the Woods Hole Oceanographic Institution in 2002. In 2017 he moved to the University of Virginia where he is the Joe D. and Helen J. Kington Professor in Environmental Change. [1]

Research

Doney is known for his use of computational methods including modeling, satellite remote sensing, and data science in the field of oceanography. [6] His work centers on how ecosystems respond to natural [7] [8] and human-induced change [9] [10] through examination of coastal and ocean carbon cycles.

Selected publications

Awards and honors

Related Research Articles

<span class="mw-page-title-main">Carbon cycle</span> Natural processes of carbon exchange

The carbon cycle is that part of the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycle. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. The carbon cycle comprises a sequence of events that are key to making Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration (storage) to and release from carbon sinks.

<span class="mw-page-title-main">Phytoplankton</span> Autotrophic members of the plankton ecosystem

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and, meaning 'wanderer' or 'drifter'.

<span class="mw-page-title-main">Biological pump</span> Carbon capture process in oceans

The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component. It is the part of the broader oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

<span class="mw-page-title-main">Ocean acidification</span> Decrease of pH levels in the ocean

Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide levels exceeding 410 ppm. CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid which dissociates into a bicarbonate ion and a hydrogen ion. The presence of free hydrogen ions lowers the pH of the ocean, increasing acidity. Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

The Global Ocean Data Analysis Project (GLODAP) is a synthesis project bringing together oceanographic data, featuring two major releases as of 2018. The central goal of GLODAP is to generate a global climatology of the World Ocean's carbon cycle for use in studies of both its natural and anthropogenically forced states. GLODAP is funded by the National Oceanic and Atmospheric Administration, the U.S. Department of Energy, and the National Science Foundation.

<span class="mw-page-title-main">Rhodolith</span> Calcareous marine nodules composed of crustose red algae

Rhodoliths are colorful, unattached calcareous nodules, composed of crustose, benthic marine red algae that resemble coral. Rhodolith beds create biogenic habitat for diverse benthic communities. The rhodolithic growth habit has been attained by a number of unrelated coralline red algae, organisms that deposit calcium carbonate within their cell walls to form hard structures or nodules that resemble beds of coral.

Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The field of chemical oceanography studies the chemistry of marine environments including the influences of different variables. Marine life has adapted to the chemistries unique to Earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

<i>Limacina helicina</i> Species of gastropod

Limacina helicina is a species of small swimming planktonic sea snail in the family Limacinidae, which belong to the group commonly known as sea butterflies (Thecosomata).

<i>Limacina rangii</i> Species of gastropod

Limacina rangii is a species of swimming sea snail in the family Limacinidae, which belong to the group commonly known as sea butterflies (Thecosomata).

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

Estuarine acidification happens when the pH balance of water in coastal marine ecosystems, specifically those of estuaries, decreases. Water, generally considered neutral on the pH scale, normally perfectly balanced between alkalinity and acidity. While ocean acidification occurs due to the ongoing decrease in the pH of the Earth's oceans, caused by the absorption of carbon dioxide (CO2) from the atmosphere, pH change in estuaries is more complicated than in the open ocean due to direct impacts from land run-off, human impact, and coastal current dynamics. In the ocean, wave and wind movement allows carbon dioxide (CO2) to mixes with water (H2O) forming carbonic acid (H2CO3). Through wave motion this chemical bond is mixed up, allowing for the further break of the bond, eventually becoming carbonate (CO3) which is basic and helps form shells for ocean creatures, and two hydron molecules. This creates the potential for acidic threat since hydron ions readily bond with any Lewis Structure to form an acidic bond. This is referred to as an oxidation-reduction reaction.

Richard A. Feely is an American chemical oceanographer currently at NOAA and an Elected Fellow of the American Association for the Advancement of Science.

<span class="mw-page-title-main">Ocean acidification in the Arctic Ocean</span>

The Arctic ocean covers an area of 14,056,000 square kilometers, and supports a diverse and important socioeconomic food web of organisms, despite its average water temperature being 32 degrees Fahrenheit. Over the last three decades, the Arctic Ocean has experienced drastic changes due to climate change. One of the changes is in the acidity levels of the ocean, which have been consistently increasing at twice the rate of the Pacific and Atlantic oceans. Arctic Ocean acidification is a result of feedback from climate system mechanisms, and is having negative impacts on Arctic Ocean ecosystems and the organisms that live within them.

<span class="mw-page-title-main">European Project on Ocean Acidification</span>

The European Project on Ocean Acidification (EPOCA) was Europe's first major research initiative and the first large-scale international research effort devoted to studying the impacts and consequences of ocean acidification. EPOCA was an EU FP7 Integrated Project active during four years, from 2008 to 2012.

<span class="mw-page-title-main">Human impact on marine life</span>

Human activities affect marine life and marine habitats through overfishing, habitat loss, the introduction of invasive species, ocean pollution, ocean acidification and ocean warming. These impact marine ecosystems and food webs and may result in consequences as yet unrecognised for the biodiversity and continuation of marine life forms.

<span class="mw-page-title-main">Particulate inorganic carbon</span>

Particulate inorganic carbon (PIC) can be contrasted with dissolved inorganic carbon (DIC), the other form of inorganic carbon found in the ocean. These distinctions are important in chemical oceanography. Particulate inorganic carbon is sometimes called suspended inorganic carbon. In operational terms, it is defined as the inorganic carbon in particulate form that is too large to pass through the filter used to separate dissolved inorganic carbon.

Joan Ann ("Joanie") Kleypas is a marine scientist known for her work on the impact of ocean acidification and climate change on coral reefs, and for advancing solutions to environmental problems caused by climate change.

<span class="mw-page-title-main">Great Calcite Belt</span> High-calcite region of the Southern Ocean

The Great Calcite Belt (GCB) refers to a region of the ocean where there are high concentrations of calcite, a mineral form of calcium carbonate. The belt extends over a large area of the Southern Ocean surrounding Antarctica. The calcite in the Great Calcite Belt is formed by tiny marine organisms called coccolithophores, which build their shells out of calcium carbonate. When these organisms die, their shells sink to the bottom of the ocean, and over time, they accumulate to form a thick layer of calcite sediment.

Low-nutrient, low-chlorophyll (LNLC)regions are aquatic zones that are low in nutrients and consequently have low rate of primary production, as indicated by low chlorophyll concentrations. These regions can be described as oligotrophic, and about 75% of the world's oceans encompass LNLC regions. A majority of LNLC regions are associated with subtropical gyres but are also present in areas of the Mediterranean Sea, and some inland lakes. Physical processes limit nutrient availability in LNLC regions, which favors nutrient recycling in the photic zone and selects for smaller phytoplankton species. LNLC regions are generally not found near coasts, owing to the fact that coastal areas receive more nutrients from terrestrial sources and upwelling. In marine systems, seasonal and decadal variability of primary productivity in LNLC regions is driven in part by large-scale climatic regimes leading to important effects on the global carbon cycle and the oceanic carbon cycle.

Galen Anile McKinley is a professor at Columbia University and the Lamont–Doherty Earth Observatory known for her work in the carbon cycle, particularly in the use of models to study the interface between the ocean and the atmosphere.

References

  1. 1 2 "Doney CV" (PDF).
  2. 1 2 "Doney". Honors Program.
  3. 1 2 "Historic Fellows | American Association for the Advancement of Science". www.aaas.org.
  4. "Doney OSTP appointment announcement".
  5. Doney, Scott Christopher (1991). A study of North Atlantic ventilation using transient tracers (Thesis). Massachusetts Institute of Technology. hdl:1721.1/52947.
  6. Glover, David M.; Jenkins, William J.; Doney, Scott C. (11 July 2011). Modeling Methods for Marine Science. Cambridge University Press. ISBN   978-0521867832.
  7. Moore, J. Keith; Doney, Scott C.; Lindsay, Keith (2004). "Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model". Global Biogeochemical Cycles. 18 (4): n/a. Bibcode:2004GBioC..18.4028M. CiteSeerX   10.1.1.210.415 . doi:10.1029/2004GB002220. hdl:1912/3396. ISSN   1944-9224. S2CID   3575218.
  8. Large, W. G.; McWilliams, J. C.; Doney, S. C. (1994). "Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization". Reviews of Geophysics. 32 (4): 363–403. Bibcode:1994RvGeo..32..363L. doi:10.1029/94RG01872. ISSN   1944-9208.
  9. Orr, James C.; Fabry, Victoria J.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Feely, Richard A.; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M.; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G.; Plattner, Gian-Kasper; Rodgers, Keith B.; Sabine, Christopher L.; Sarmiento, Jorge L.; Schlitzer, Reiner; Slater, Richard D.; Totterdell, Ian J.; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew (September 2005). "Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms". Nature. 437 (7059): 681–686. Bibcode:2005Natur.437..681O. doi:10.1038/nature04095. hdl: 1912/370 . ISSN   1476-4687. PMID   16193043. S2CID   4306199.
  10. Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V. (2004). "Response of ocean ecosystems to climate warming". Global Biogeochemical Cycles. 18 (3): n/a. Bibcode:2004GBioC..18.3003S. doi:10.1029/2003GB002134. hdl: 1912/3392 . ISSN   1944-9224. S2CID   15482539.
  11. "Scott Doney". Honors Program.
  12. "FELLOWS (By Name)". Earth Leadership.
  13. "2013 SCOTT DONEY". A. G. HUNTSMAN AWARD FOR EXCELLENCE IN THE MARINE SCIENCES.
  14. "ASLO Fellows". ASLO Fellows.