Seismic tomography

Last updated

Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth with seismic waves produced by earthquakes or explosions. P-, S-, and surface waves can be used for tomographic models of different resolutions based on seismic wavelength, wave source distance, and the seismograph array coverage. [1] The data received at seismometers are used to solve an inverse problem, wherein the locations of reflection and refraction of the wave paths are determined. This solution can be used to create 3D images of velocity anomalies which may be interpreted as structural, thermal, or compositional variations. Geoscientists use these images to better understand core, mantle, and plate tectonic processes.

Contents

Theory

Tomography is solved as an inverse problem. Seismic travel time data are compared to an initial Earth model and the model is modified until the best possible fit between the model predictions and observed data is found. Seismic waves would travel in straight lines if Earth was of uniform composition, but the compositional layering, tectonic structure, and thermal variations reflect and refract seismic waves. The location and magnitude of these variations can be calculated by the inversion process, although solutions to tomographic inversions are non-unique.

Seismic tomography is similar to medical x-ray computed tomography (CT scan) in that a computer processes receiver data to produce a 3D image, although CT scans use attenuation instead of traveltime difference. Seismic tomography has to deal with the analysis of curved ray paths which are reflected and refracted within the Earth, and potential uncertainty in the location of the earthquake hypocenter. CT scans use linear x-rays and a known source. [2]

History

Seismic tomography requires large datasets of seismograms and well-located earthquake or explosion sources. These became more widely available in the 1960s with the expansion of global seismic networks, and in the 1970s when digital seismograph data archives were established. These developments occurred concurrently with advancements in computing power that were required to solve inverse problems and generate theoretical seismograms for model testing. [3]

In 1977, P-wave delay times were used to create the first seismic array-scale 2D map of seismic velocity. [4] In the same year, P-wave data were used to determine 150 spherical harmonic coefficients for velocity anomalies in the mantle. [1] The first model using iterative techniques, required when there are a large numbers of unknowns, was done in 1984. This built upon the first radially anisotropic model of the Earth, which provided the required initial reference frame to compare tomographic models to for iteration. [5] Initial models had resolution of ~3000 to 5000 km, as compared to the few hundred kilometer resolution of current models. [6] [7] [8]

Seismic tomographic models improve with advancements in computing and expansion of seismic networks. Recent models of global body waves used over 107 traveltimes to model 105 to 106 unknowns. [9] [6]

Process

Seismic tomography uses seismic records to create 2D and 3D images of subsurface anomalies by solving large inverse problems such that generate models consistent with observed data. Various methods are used to resolve anomalies in the crust and lithosphere, shallow mantle, whole mantle, and core based on the availability of data and types of seismic waves that penetrate the region at a suitable wavelength for feature resolution. The accuracy of the model is limited by availability and accuracy of seismic data, wave type utilized, and assumptions made in the model.

P-wave data are used in most local models and global models in areas with sufficient earthquake and seismograph density. S- and surface wave data are used in global models when this coverage is not sufficient, such as in ocean basins and away from subduction zones. First-arrival times are the most widely used, but models utilizing reflected and refracted phases are used in more complex models, such as those imaging the core. Differential traveltimes between wave phases or types are also used.

Local tomography

Local tomographic models are often based on a temporary seismic array targeting specific areas, unless in a seismically active region with extensive permanent network coverage. These allow for the imaging of the crust and upper mantle.

Regional or global tomography

Simplified and interpreted P- and S-wave velocity variations in the mantle across southern North America showing the subducted Farallon Plate. FarallonTomoSlice.png
Simplified and interpreted P- and S-wave velocity variations in the mantle across southern North America showing the subducted Farallon Plate.

Regional to global scale tomographic models are generally based on long wavelengths. Various models have better agreement with each other than local models due to the large feature size they image, such as subducted slabs and superplumes. The trade off from whole mantle to whole Earth coverage is the coarse resolution (hundreds of kilometers) and difficulty imaging small features (e.g. narrow plumes). Although often used to image different parts of the subsurface, P- and S-wave derived models broadly agree where there is image overlap. These models use data from both permanent seismic stations and supplementary temporary arrays.

Applications

Seismic tomography can resolve anisotropy, anelasticity, density, and bulk sound velocity. [8] Variations in these parameters may be a result of thermal or chemical differences, which are attributed to processes such as mantle plumes, subducting slabs, and mineral phase changes. Larger scale features that can be imaged with tomography include the high velocities beneath continental shields and low velocities under ocean spreading centers. [4]

Hotspots

The African large low-shear-velocity province (superplume) Cartoon of African LLSVP.jpg
The African large low-shear-velocity province (superplume)

The mantle plume hypothesis proposes that areas of volcanism not readily explained by plate tectonics, called hotspots, are a result of thermal upwelling from as deep as the core-mantle boundary that become diapirs in the crust. This is an actively contested theory, [11] although tomographic images suggest there are anomalies beneath some hotspots. The best imaged of these are large low-shear-velocity provinces, or superplumes, visible on S-wave models of the lower mantle and believed to reflect both thermal and compositional differences.

The Yellowstone hotspot is responsible for volcanism at the Yellowstone Caldera and a series of extinct calderas along the Snake River Plain. The Yellowstone Geodynamic Project sought to image the plume beneath the hotspot. [13] They found a strong low-velocity body from ~30 to 250 km depth beneath Yellowstone, and a weaker anomaly from 250 to 650 km depth which dipped 60° west-northwest. The authors attribute these features to the mantle plume beneath the hotspot being deflected eastward by flow in the upper mantle seen in S-wave models.

The Hawaii hotspot produced the Hawaiian–Emperor seamount chain. Tomographic images show it to be 500 to 600 km wide and up to 2,000 km deep.

Subduction zones

Subducting plates are colder than the mantle into which they are moving. This creates a fast anomaly that is visible in tomographic images. Both the Farallon plate that subducted beneath the west coast of North America [14] and the northern portion of the Indian plate that has subducted beneath Asia [15] have been imaged with tomography.

Limitations

Global seismic networks have expanded steadily since the 1960s, but are still concentrated on continents and in seismically active regions. Oceans, particularly in the southern hemisphere, are under-covered. [11] Tomographic models in these areas will improve when more data becomes available. The uneven distribution of earthquakes naturally biases models to better resolution in seismically active regions.

The type of wave used in a model limits the resolution it can achieve. Longer wavelengths are able to penetrate deeper into the Earth, but can only be used to resolve large features. Finer resolution can be achieved with surface waves, with the trade off that they cannot be used in models of the deep mantle. The disparity between wavelength and feature scale causes anomalies to appear of reduced magnitude and size in images. P- and S-wave models respond differently to the types of anomalies depending on the driving material property. First arrival time based models naturally prefer faster pathways, causing models based on these data to have lower resolution of slow (often hot) features. [9] Shallow models must also consider the significant lateral velocity variations in continental crust.

Seismic tomography provides only the current velocity anomalies. Any prior structures are unknown and the slow rates of movement in the subsurface (mm to cm per year) prohibit resolution of changes over modern timescales. [16]

Tomographic solutions are non-unique. Although statistical methods can be used to analyze the validity of a model, unresolvable uncertainty remains. [9] This contributes to difficulty comparing the validity of different model results.

Computing power limits the amount of seismic data, number of unknowns, mesh size, and iterations in tomographic models. This is of particular importance in ocean basins, which due to limited network coverage and earthquake density require more complex processing of distant data. Shallow oceanic models also require smaller model mesh size due to the thinner crust. [5]

Tomographic images are typically presented with a color ramp representing the strength of the anomalies. This has the consequence of making equal changes appear of differing magnitude based on visual perceptions of color, such as the change from orange to red being more subtle than blue to yellow. The degree of color saturation can also visually skew interpretations. These factors should be considered when analyzing images. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the generation and propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic microseism, atmospheric, and artificial processes such as explosions and human activities. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist works in basic or applied seismology.

<span class="mw-page-title-main">Seismic wave</span> Seismic, volcanic, or explosive energy that travels through Earths layers

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake, volcanic eruption, magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones, or accelerometers. Seismic waves are distinguished from seismic noise, which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

<span class="mw-page-title-main">P wave</span> Type of seismic wave

A P wave is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P waves may be transmitted through gases, liquids, or solids.

<span class="mw-page-title-main">Iceland hotspot</span> Hotspot partly responsible for volcanic activity forming the Iceland Plateau and island

The Iceland hotspot is a hotspot which is partly responsible for the high volcanic activity which has formed the Iceland Plateau and the island of Iceland.

<span class="mw-page-title-main">Don L. Anderson</span> American geophysicist

Don Lynn Anderson was an American geophysicist who made significant contributions to the understanding of the origin, evolution, structure, and composition of Earth and other planets. An expert in numerous scientific disciplines, Anderson's work combined seismology, solid state physics, geochemistry and petrology to explain how the Earth works. Anderson was best known for his contributions to the understanding of the Earth's deep interior, and more recently, for the plate theory hypothesis that hotspots are the product of plate tectonics rather than narrow plumes emanating from the deep Earth. Anderson was Professor (Emeritus) of Geophysics in the Division of Geological and Planetary Sciences at the California Institute of Technology (Caltech). He received numerous awards from geophysical, geological and astronomical societies. In 1998 he was awarded the Crafoord Prize by the Royal Swedish Academy of Sciences along with Adam Dziewonski. Later that year, Anderson received the National Medal of Science. He held honorary doctorates from Rensselaer Polytechnic Institute and the University of Paris (Sorbonne), and served on numerous university advisory committees, including those at Harvard, Princeton, Yale, University of Chicago, Stanford, University of Paris, Purdue University, and Rice University. Anderson's wide-ranging research resulted in hundreds of published papers in the fields of planetary science, seismology, mineral physics, petrology, geochemistry, tectonics and the philosophy of science.

<span class="mw-page-title-main">EarthScope</span> Earth science program exploring the structure of the North American continent

The EarthScope project was an National Science Foundation (NSF) funded earth science program that, from 2003-2018, used geological and geophysical techniques to explore the structure and evolution of the North American continent and to understand the processes controlling earthquakes and volcanoes. The project had three components: USArray, the Plate Boundary Observatory, and the San Andreas Fault Observatory at Depth. Organizations associated with the project included UNAVCO, the Incorporated Research Institutions for Seismology (IRIS), Stanford University, the United States Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Several international organizations also contributed to the initiative. EarthScope data are publicly accessible.

<span class="mw-page-title-main">Geophysical imaging</span>

Geophysical imaging is a minimally destructive geophysical technique that investigates the subsurface of a terrestrial planet. Geophysical imaging is a noninvasive imaging technique with a high parametrical and spatio-temporal resolution. It can be used to model a surface or object understudy in 2D or 3D as well as monitor changes.

The Anahim hotspot is a hypothesized hotspot in the Central Interior of British Columbia, Canada. It has been proposed as the candidate source for volcanism in the Anahim Volcanic Belt, a 300 kilometres long chain of volcanoes and other magmatic features that have undergone erosion. This chain extends from the community of Bella Bella in the west to near the small city of Quesnel in the east. While most volcanoes are created by geological activity at tectonic plate boundaries, the Anahim hotspot is located hundreds of kilometres away from the nearest plate boundary.

The receiver function technique is a way to image the structure of the Earth and its internal boundaries by using the information from teleseismic earthquakes recorded at a three-component seismograph.

<span class="mw-page-title-main">Society hotspot</span> Pacific volcanic hotspot

The Society hotspot is a volcanic hotspot in the south Pacific Ocean which is responsible for the formation of the Society Islands, an archipelago of fourteen volcanic islands and atolls spanning around 720 kilometres (450 mi) of the ocean which formed between 4.5 and <1 Ma.

A synthetic seismogram is the result of forward modelling the seismic response of an input earth model, which is defined in terms of 1D, 2D or 3D variations in physical properties. In hydrocarbon exploration this is used to provide a 'tie' between changes in rock properties in a borehole and seismic reflection data at the same location. It can also be used either to test possible interpretation models for 2D and 3D seismic data or to model the response of the predicted geology as an aid to planning a seismic reflection survey. In the processing of wide-angle reflection and refraction (WARR) data, synthetic seismograms are used to further constrain the results of seismic tomography. In earthquake seismology, synthetic seismograms are used either to match the predicted effects of a particular earthquake source fault model with observed seismometer records or to help constrain the Earth's velocity structure. Synthetic seismograms are generated using specialized geophysical software.

<span class="mw-page-title-main">Surface wave inversion</span>

Seismic inversion involves the set of methods which seismologists use to infer properties through physical measurements. Surface-wave inversion is the method by which elastic properties, density, and thickness of layers in the subsurface are obtained through analysis of surface-wave dispersion. The entire inversion process requires the gathering of seismic data, the creation of dispersion curves, and finally the inference of subsurface properties.

<span class="mw-page-title-main">Geothermal exploration</span>

Geothermal exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering.

An ocean-bottom seismometer (OBS) is a seismometer that is designed to record the earth motion under oceans and lakes from man-made sources and natural sources.

<span class="mw-page-title-main">Large low-shear-velocity provinces</span> Structures of the Earths mantle

Large low-shear-velocity provinces (LLSVPs), also called large low-velocity provinces (LLVPs) or superplumes, are characteristic structures of parts of the lowermost mantle, the region surrounding the outer core deep inside the Earth. These provinces are characterized by slow shear wave velocities and were discovered by seismic tomography of deep Earth. There are two main provinces: the African LLSVP and the Pacific LLSVP, both extending laterally for thousands of kilometers and possibly up to 1,000 kilometres vertically from the core–mantle boundary. These have been named Tuzo and Jason respectively, after Tuzo Wilson and W. Jason Morgan, two geologists acclaimed in the field of plate tectonics. The Pacific LLSVP is 3,000 kilometers across and underlies four hotspots on Earth's crust that suggest multiple mantle plumes underneath. These zones represent around 8% of the volume of the mantle, or 6% of the entire Earth.

Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics. However, the origins of volcanic activity within plates remains controversial.

<span class="mw-page-title-main">MERMAID</span>

MERMAID is a marine scientific instrument platform, short for Mobile Earthquake Recorder for Marine Areas by Independent Divers.

Subsurface mapping by ambient noise tomography is the mapping underground geological structures under the assistance of seismic signals. Ambient noise, which is not associated with the earthquake, is the background seismic signals. Given that the ambient noises have low frequencies in general, the further classification of ambient noise include secondary microseisms, primary microseisms, and seismic hum, based on different range of frequencies. We can utilize the ambient noise data collected by seismometers to create images for the subsurface under the following processes. Since the ambient noise is considered as diffuse wavefield, we can correlate the filtered ambient noise data from a pair of seismic stations to find the velocities of seismic wavefields. A 2-dimensional or 3-dimensional velocity map, showing the spatial velocity difference of the subsurface, can thus be created for observing the geological structures. Subsurface mapping by ambient noise tomography can be applied in different fields, such as detecting the underground void space, monitoring landslides, and mapping the crustal and upper mantle structure.

<span class="mw-page-title-main">Seismic velocity structure</span> Seismic wave velocity variation

Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface. It is reflective of subsurface properties such as material composition, density, porosity, and temperature. Geophysicists rely on the analysis and interpretation of the velocity structure to develop refined models of the subsurface geology, which are essential in resource exploration, earthquake seismology, and advancing our understanding of Earth's geological development.

References

  1. 1 2 Nolet, G. (1987-01-01). "Seismic wave propagation and seismic tomography". In Nolet, Guust (ed.). Seismic Tomography. Seismology and Exploration Geophysics. Springer Netherlands. pp. 1–23. doi:10.1007/978-94-009-3899-1_1. ISBN   978-90-277-2583-7.
  2. 1 2 "Seismic Tomography—Using earthquakes to image Earth's interior". Incorporated Research Institutions for Seismology (IRIS). Retrieved 18 May 2016.
  3. "A Brief History of Seismology" (PDF). United States Geologic Survey (USGS). Archived from the original on 3 August 2016. Retrieved 4 May 2016.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. 1 2 Kearey, Philip; Klepeis, Keith A.; Vine, Frederick J. (2013-05-28). Global Tectonics. John Wiley & Sons. ISBN   978-1-118-68808-3.
  5. 1 2 Liu, Q.; Gu, Y. J. (2012-09-16). "Seismic imaging: From classical to adjoint tomography". Tectonophysics. 566–567: 31–66. Bibcode:2012Tectp.566...31L. doi:10.1016/j.tecto.2012.07.006.
  6. 1 2 Hosseini, Kasra; Sigloch, Karin; Tsekhmistrenko, Maria; Zaheri, Afsaneh; Nissen-Meyer, Tarje; Igel, Heiner (2020). "Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves". Geophysical Journal International. 220: 96–141. doi:10.1093/gji/ggz394 . Retrieved 2024-04-15.
  7. Tsekhmistrenko, Maria; Sigloch, Karin; Hosseini, Kasra; Barruol, Guilhem (August 2021). "A tree of Indo-African mantle plumes imaged by seismic tomography". Nature Geoscience. 14 (8): 612–619. Bibcode:2021NatGe..14..612T. doi:10.1038/s41561-021-00762-9. ISSN   1752-0908.
  8. 1 2 Romanowicz, Barbara (2003-01-01). "GLOBAL MANTLE TOMOGRAPHY: Progress Status in the Past 10 Years". Annual Review of Earth and Planetary Sciences. 31 (1): 303–328. Bibcode:2003AREPS..31..303R. doi:10.1146/annurev.earth.31.091602.113555.
  9. 1 2 3 4 Rawlinson, N.; Pozgay, S.; Fishwick, S. (2010-02-01). "Seismic tomography: A window into deep Earth". Physics of the Earth and Planetary Interiors. 178 (3–4): 101–135. Bibcode:2010PEPI..178..101R. doi:10.1016/j.pepi.2009.10.002.
  10. Brzostowski, Matthew; McMechan, George (1992). "3-D tomographic imaging of near-surface seismic velocity and attenuation". GeoScienceWorld. Society of Exploration Geophysicists. Retrieved 2 June 2023.
  11. 1 2 3 Julian, Bruce (2006). "Seismology: The Hunt for Plumes" (PDF). mantleplumes.org. Retrieved 3 May 2016.
  12. Shapiro, N. M. (11 March 2005). "High-Resolution Surface-Wave Tomography from Ambient Seismic Noise". Science. 307 (5715): 1615–1618. Bibcode:2005Sci...307.1615S. CiteSeerX   10.1.1.399.6167 . doi:10.1126/science.1108339. PMID   15761151. S2CID   10846386.
  13. Smith, Robert B.; Jordan, Michael; Steinberger, Bernhard; Puskas, Christine M.; Farrell, Jamie; Waite, Gregory P.; Husen, Stephan; Chang, Wu-Lung; O'Connell, Richard (2009-11-20). "Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow". Journal of Volcanology and Geothermal Research. The Track of the Yellowstone HotspotWhat do Neotectonics, Climate Indicators, Volcanism, and Petrogenesis Reveal about Subsurface Processes?. 188 (1–3): 26–56. Bibcode:2009JVGR..188...26S. doi:10.1016/j.jvolgeores.2009.08.020.
  14. "Seismic Tomography" (PDF). earthscope.org. Incorporated Research Institutions for Seismology (IRIS). Retrieved 18 May 2016.
  15. Replumaz, Anne; Negredo, Ana M.; Guillot, Stéphane; Villaseñor, Antonio (2010-03-01). "Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction". Tectonophysics. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. 483 (1–2): 125–134. Bibcode:2010Tectp.483..125R. doi:10.1016/j.tecto.2009.10.007.
  16. Dziewonski, Adam. "Global Seismic Tomography: What we really can say and what we make up" (PDF). mantleplumes.org. Retrieved 18 May 2016.
  1. Hosseini, Kasra; Matthews, Kara J.; Sigloch, Karin; Shephard, Grace E.; Domeier, Mathew; Tsekhmistrenko, Maria (May 2018). "SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth's Deep Interior". Geochemistry, Geophysics, Geosystems. 19 (5): 1464–1483. Bibcode:2018GGG....19.1464H. doi:10.1029/2018GC007431. ISSN   1525-2027. PMC   6109961 . PMID   30174559.