This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(March 2021) |
Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It is a behaviour differing (usually very slightly) from elastic behaviour.
Considering first an ideal elastic material, Hooke's law defines the relation between stress and strain as:
The constant is called the modulus of elasticity (or just modulus) while its reciprocal is called the modulus of compliance (or just compliance).
There are three postulates that define the ideal elastic behaviour:
These conditions may be lifted in various combinations to describe different types of behaviour, summarized in the following table:
Unique equilibrium relationship (complete recoverability) | Instantaneous | Linear | |
Ideal elasticity | Yes | Yes | Yes |
Nonlinear elasticity | Yes | Yes | No |
Instantaneous plasticity | No | Yes | No |
Anelasticity | Yes | No | Yes |
Linear viscoelasticity | No | No | Yes |
Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.
The formal definition of linearity is: "If a given stress history produces the strain , and if a stress gives rise to , then the stress will give rise to the strain ." The postulate of linearity is used because of its practical usefulness. The theory would become much more complicated otherwise, but in cases of materials under low stress this postulate can be considered true.
In general, the change of an external variable of a thermodynamic system causes a response from the system called thermal relaxation that leads it to a new equilibrium state. In the case of mechanical changes, the response is known as anelastic relaxation, and in the same formal way can be also described for example dielectric or magnetic relaxation. The internal values are coupled to stress and strain through kinetic processes such as diffusion. So that the external manifestation of the internal relaxation behaviours is the stress strain relation, which in this case is time dependant.
Experiments can be made where either the stress or strain is held constant for a certain time. These are called quasi-static, and in this case, anelastic materials exhibit creep, elastic aftereffect, and stress relaxation.
In these experiments a stress applied and held constant while the strain is observed as a function of time. This response function is called creep defined by and characterizes the properties of the solid. The initial value of is called the unrelaxed compliance, the equilibrium value is called relaxed compliance and their difference is called the relaxation of the compliance.
After a creep experiment has been run for a while, when stress is released the elastic spring-back is in general followed by a time dependent decay of the strain. This effect is called the elastic aftereffect or “creep recovery”. The ideal elastic solid returns to zero strain immediately, without any after-effect, while in the case of anelasticity total recovery takes time, and that is the aftereffect. The linear viscoelastic solid only recovers partially, because the viscous contribution to strain cannot be recovered.
In a stress relaxation experiment the stress σ is observed as a function of time while keeping a constant strain and defining a stress relaxation function similarly to the creep function, with unrelaxed and relaxed modulus MU and MR.
At equilibrium, , and at a short timescale, when the material behaves as if ideally elastic, also holds.
To get information about the behaviour of a material over short periods of time dynamic experiments are needed. In this kind of experiment a periodic stress (or strain) is imposed on the system, and the phase lag of the strain (or stress) is determined.
The stress can be written as a complex number where is the amplitude and the frequency of vibration. Then the strain is periodic with the same frequency where is the strain amplitude and is the angle by which the strain lags, called loss angle. For ideal elasticity . For the anelastic case is in general not zero, so the ratio is complex. This quantity is called the complex compliance . Thus,
where , the absolute value of , is called the absolute dynamic compliance, given by .
This way two real dynamic response functions are defined, and . Two other real response functions can also be introduced by writing the previous equation in another notation:
where the real part is called "storage compliance" and the imaginary part is called "loss compliance".
J1 and J2 being called "storage compliance" and "loss compliance" respectively is significant, because calculating the energy stored and the energy dissipated in a cycle of vibration gives following equations:
where is the energy dissipated in a full cycle per unit of volume while the maximum stored energy per unit volume is given by:
The ratio of the energy dissipated to the maximum stored energy is called the "specific damping capacity”. This ratio can be written as a function of the loss angle by .
This shows that the loss angle gives a measure of the fraction of energy lost per cycle due to anelastic behaviour, and so it is known as the internal friction of the material.
The dynamic response functions can only be measured in an experiment at frequencies below any resonance of the system used. While theoretically easy to do, in practice the angle is difficult to measure when very small, for example in crystalline materials. Therefore, subresonant methods are not generally used. Instead, methods where the inertia of the system is considered are used. These can be divided into two categories:
The response of a system in a forced-vibration experiment with a periodic force has a maximum of the displacement at a certain frequency of the force. This is known as resonance, and the resonant frequency. The resonance equation is simplified in the case of . In this case the dependence of on frequency is plotted as a Lorentzian curve. If the two values and are the ones at which falls to half maximum value, then:
The loss angle that measures the internal friction can be obtained directly from the plot, since it is the width of the resonance peak at half-maximum. With this and the resonant frequency it is then possible to obtain the primary response functions. By changing the inertia of the sample the resonant frequency changes, and so can the response functions at different frequencies can be obtained.
The more common way of obtaining the anelastic response is measuring the damping of the free vibrations of a sample. Solving the equation of motion for this case includes the constant called logarithmic decrement. Its value is constant and is . It represents the natural logarithm of the ratio of successive vibrations' amplitudes:
It is a convenient and direct way of measuring the damping, as it is directly related to the internal friction.
Wave propagation methods utilize a wave traveling down the specimen in one direction at a time to avoid any interference effects. If the specimen is long enough and the damping high enough, this can be done by continuous wave propagation. More commonly, for crystalline materials with low damping, a pulse propagation method is used. This method employs a wave packet whose length is small compared to the specimen. The pulse is produced by a transducer at one end of the sample, and the velocity of the pulse is determined either by the time it takes to reach the end of the sample, or the time it takes to come back after a reflection at the end. The attenuation of the pulse is determined by the decrease in amplitude after successive reflections.
Each response function constitutes a complete representation of the anelastic properties of the solid. Therefore, any one of the response functions can be used to completely describe the anelastic behaviour of the solid, and every other response function can be derived from the chosen one.
The Boltzmann superposition principle states that every stress applied at a different time deforms the material as it if were the only one. This can be written generally for a series of stresses that are applied at successive times . In this situation, the total strain will be:
or in the integral form, is the stress is varied continuously:
The controlled variable can always be changed, expressing the stress as a function of time in a similar way:
These integral expressions are a generalization of Hooke's law in the case of anelasticity, and they show that material acts almost as they have a memory of their history of stress and strain. These two of equations imply that there is a relation between the J(t) and M(t). To obtain it the method of Laplace transforms can be used, or they can be related implicitly by:
In this way though they are correlated in a complicated manner and it is not easy to evaluate one of these functions knowing the other. Hover it is still possible in principle to derive the stress relaxation function from the creep function and vice versa thanks to the Boltzamann principle.
It is possible to describe anelastic behaviour considering a set of parameters of the material. Since the definition of anelasticity includes linearity and a time dependant stress–strain relation, it can be described by using a differential equation with terms including stress, strain, and their derivatives.
To better visualize the anelastic behaviour appropriate mechanical models can be used. The simplest one contains three elements (two springs and a dashpot) since that is the least number of parameters necessary for a stress–strain equation describing a simple anelastic solid. This specific basic behaviour is of such importance that a material that exhibits it is called standard anelastic solid.
Since from the definition of anelasticity linearity is required, all differential stress–strain equations of anelasticity must be of first degree. These equations can contain many different constants to the describe the specific solid. The most general one can be written as:
For the specific case of anelasticity, which requires the existence of an equilibrium relation, additional restrictions must be placed on this equation.
Each stress–strain equation can be accompanied by a mechanical model to help visualizing the behaviour of materials.
In the case where only the constants and are not zero, the body is ideally elastic and is modelled by the Hookean spring.
To add internal friction to a model, the Newtonian dashpot is used, represented by a piston moving in an ideally viscous liquid. Its velocity is proportional to the applied force, therefore entirely dissipating work as heat.
These two mechanical elements can be combined in series or in parallel. In a series combination the stresses are equal, while the strains are additive. Similarly, for a parallel combination of the same elements the strains are equal and the stresses additive. Having said that, the two simplest models that combine more than one element are the following:
The Voigt model, described by the equation , allows for no instantaneous deformation, therefore it is not a realistic representation of a crystalline solid.
The generalized stress–strain equation for the Maxwell model is , and since it displays steady viscous creep rather than recoverable creep is yet again not suited to describe an anelastic material.
Considering the Voigt model, what it lacks is the instantaneous elastic response, characteristic of crystals. To obtain this missing feature, a spring is attached in series with the Voigt model. This is called the Voigt unit. A spring in series with a Voigt unit shows all the characteristics of an anelastic material despite its simplicity. It is differential stress–strain equation it therefore interesting, and can be calculated to be:
The solid whose properties are defined by this equation is called the standard anelastic solid. The solution of this equation for the creep function is:
where is called the relaxation time at constant stress.
To describe the stress relaxation behaviour, one can also consider another three-parameter model more suited to the stress relaxation experiment, consisting of a Maxwell unit placed in parallel with a spring. Its differential stress–strain equation is the same as the other model considered, therefore the two models are equivalent. The Voigt-type is more convenient in the analysis of creep, while the Maxwell-type for the stress relaxation.
The dynamic response functions and , are:
These are often called the Debye equations since were first derived by P. Debye for the case of dielectric relaxation phenomena. The width of the peak at half maximum value for is given by
The equation for the internal friction may also be expressed as a Debye peak, in the case where as:
The relaxation strength can be obtained from the height of such a peak, while the relaxation time from the frequency at which the peak occurs.
The dynamic properties plotted as function of are considered keeping constant while varying . However, taking a sample through a Debye peak by varying the frequency continuously is not possible with the more common resonance methods. It is however possible to plot the peak by varying while keeping constant.
The basis of why this is possible is that in many cases the relaxation rate is expressible by an Arrhenius equation:
where is the absolute temperature, is a frequency factor, is the activation energy, is the Boltzmann constant.
Therefore, where this equation applies, the quantity may be varied over a wide range simply by changing the temperature. It then becomes possible to treat the dynamic response functions as functions of temperature.
The next level of complexity in the description of an anelastic solid is a model containing n Voigt units in series with each other and with a spring. This corresponds to a differential stress–strain equation which contains all terms up to order n in both the stress and the strain. Similarly, a model containing n Maxwell units all in parallel with each other and with a spring is also equivalent to a differential stress–strain equation of the same form.
In order to have both elastic and anelastic behaviour, the differential stress–strain equation must be of the same order in the stress and strain and must start from terms of order zero.
A solid described by such function shows a “discrete spectrum” of relaxation processes, or simply a "discrete relaxation spectrum". Each "line" of the spectrum is characterized by a relaxation time , and a magnitude . The standard anelastic solid considered before is just a particular case of a one-line spectrum, that can be also called having a "single relaxation time".
A technique that measures internal friction and modulus of elasticity is called Mechanical Spectroscopy. It is extremely sensitive and can give information not attainable with other experimental methodologies.
Despite being historically uncommon, it has some great utility in solving practical problems regarding industrial production where knowledge and control of the microscopic structure of materials is becoming more and more important. Some of these applications are the following.
Unlike other chemical methods of analysis, mechanical spectroscopy is the only technique that can determine the quantity of interstitial elements in a solid solution.
In body centered cubic structures, like iron's, interstitial atoms position themselves in octahedral sites. In an undeformed lattice all octahedral positions are the same, having the same probability of being occupied. Applying a certain tensile stress in one direction parallel to a side of the cube dilates the side while compressing other orthogonal ones. Because of this, the octahedral positions stop being equivalent, and the larger ones will be occupied instead of the smallest ones, making the interstitial atom jump from one to the other. Inverting the direction of the stress has obviously the opposite effect. By applying an alternating stress, the interstitial atom will keep jumping from one site to the other, in a reversible way, causing dissipation of energy and a producing a so-called Snoek peak. The more atoms take part in this process the more the Snoek peak will be intense. Knowing the energy dissipation of a single event and the height of the Snoek peak can make possible to determine the concentration of atoms involved in the process.
Grain boundaries in nanocrystalline materials form are significant enough to be responsible for some specific properties of these types of materials. Both their size and structure are important to determine the mechanical effects they have. High resolution microscopy show that material put under severe plastic deformation are characterized by significant distortions and dislocations over and near the grain boundaries.
Using mechanical spectroscopy techniques one can determine whether nanocrystalline metals under thermal treatments change their mechanical behaviour by changing their grain boundaries structure. One example is nanocrystalline aluminium.
Mechanical spectroscopy allows to determine the critical points martensite start and martensite finish in martensitic transformations for steel and other metals and alloys. They can be identified by anomalies in the trend of the modulus. Using steel AISI 304 as an example, an anomaly in the distribution of the elements in the alloy can cause a local increase in , especially in areas with less nickel, and when usually martensite formation can only be induced by plastic deformation, around 9% can get formed anyway during cooling.
Ferromagnetic materials have specific anelastic effects that influence internal friction and dynamic modulus.
A non-magnetized ferromagnetic material forms Weiss domains, each one possessing a spontaneous and randomly directed magnetization. The boundary zones, called Bloch walls, are about one hundred atoms long, and here the orientation of one domain gradually changes into the one of the adjacent one. Applying an external magnetic field makes domains with the same orientations increase in size, until all Bloch walls are removed, and the material is magnetized.
Crystalline defects tend to anchor the domains, opposing their movement. So, materials can be divided into magnetically soft or hard based on how much the walls are strongly anchored.
In these kind of materials magnetic and elastic phenomena are correlated, like in the case of magnetostriction, that is the property of changing size when under a magnetic field, or the opposite case, changing magnetic properties when a mechanical stress is applied. These effects are dependent on the Weiss domains and their ability to re-orient.
When a magnetoelastic material is put under stress, the deformation is caused by the sum of the elastic and magnetoelastic ones. The presence of this last one changes the internal friction, by adding an additional dissipation mechanism.
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid. A generalization of the scalar relation to a tensor equation lacks motivation from more microscopic models and does not comply with the concept of material objectivity. However, these criteria are fulfilled by the Upper-convected Maxwell model.
Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:
In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.
The work of a force on a particle along a virtual displacement is known as the virtual work.
The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales, but shows additional resistance to fast deformation. The model was developed independently by the British physicist Lord Kelvin in 1865 and by the German physicist Woldemar Voigt in 1890.
Dynamic modulus is the ratio of stress to strain under vibratory conditions. It is a property of viscoelastic materials.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.
Damage mechanics is concerned with the representation, or modeling, of damage of materials that is suitable for making engineering predictions about the initiation, propagation, and fracture of materials without resorting to a microscopic description that would be too complex for practical engineering analysis.
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
Creep and shrinkage of concrete are two physical properties of concrete. The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste, is fundamentally different from the creep of metals and polymers. Unlike the creep of metals, it occurs at all stress levels and, within the service stress range, is linearly dependent on the stress if the pore water content is constant. Unlike the creep of polymers and metals, it exhibits multi-months aging, caused by chemical hardening due to hydration which stiffens the microstructure, and multi-year aging, caused by long-term relaxation of self-equilibrated micro-stresses in the nano-porous microstructure of the C-S-H. If concrete is fully dried, it does not creep, but it is next to impossible to dry concrete fully without severe cracking.
In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.
In continuum mechanics, a hypoelastic material is an elastic material that has a constitutive model independent of finite strain measures except in the linearized case. Hypoelastic material models are distinct from hyperelastic material models in that, except under special circumstances, they cannot be derived from a strain energy density function.