Multiphase particle-in-cell method

Last updated

The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. [1] This method has proven to be stable in dense particle flows, computationally efficient, [2] and physically accurate. [3] This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.

Contents

History

The multiphase particle-in-cell (MP-PIC) method was originally developed for a one-dimensional case in the mid-1990s by P.J. O'Rourke (Los Alamos National Laboratory), [1] who also coined the term MP-PIC. Subsequent extension of the method to two-dimensions was performed by D.M. Snider and O'Rourke. [4] By 2001, D.M. Snider had extended the MP-PIC method to full three-dimensions. [2] Currently, the MP-PIC method is used in commercial software for the simulation of particle-fluid systems and also available in MFiX suite by NETL.

Method

The MP-PIC method is described by the governing equations, interpolation operators, and the particle stress model.

Governing equations

Fluid phase

The multiphase particle-in-cell method assumes an incompressible fluid phase with the corresponding continuity equation,

where the is the fluid volume fraction and is the fluid velocity. Momentum transport is given by a variation of the Navier-Stokes equations where is the fluid density, is the fluid pressure, and is the body force vector (gravity).

The laminar fluid viscosity terms, not included in the fluid momentum equation, can be included if necessary but will have a negligible effect on dense particle flow. In the MP-PIC method, the fluid motion is coupled with the particle motion through , the rate of momentum exchange per volume between the fluid and particle phases. The fluid phase equations are solved using a finite volume approach.

Particle phase

The particle phase is described by a probability distribution function (PDF), which indicates the likelihood of finding a particle with a velocity , particle density , particle volume at location and time . The particle PDF changes in time as described by

where is the particle acceleration.

A numerical solution of the particle phase is obtained by dividing the distribution into a finite number of "computational particles" that each represent a number of real particles with identical mass density, volume, velocity and location. At each time step, the velocity and location of each computational particle are updated using a discretized form of the above equations. The use of computational particles allows for a significant reduction in computational requirements with a negligible impact on accuracy under many conditions. The use of the computational particle in the Multiphase Particle-in-Cell method allows a full particle size distribution (PSD) to be modeled within the system as well as the modeling of polydisperse solids. [5]

Identities of the particle probability distribution function

The following local particle properties are determined from integrating the particle probability distribution function:

  • Particle volume fraction:
  • Average particle density:
  • Mean particle velocity:

Interphase coupling

The particle phase is coupled to the fluid phase through the particle acceleration term, , defined as

In the acceleration term, is determined from the particle drag model and is determined from the interparticle stress model.

The momentum of the fluid phase is coupled to the particle phase through the rate of momentum exchange, . This is defined from the particle population distribution as

Interpolation operators

The transfer of particle properties between the Lagrangian particle space and the Eulerian grid is performed using linear interpolation functions. Assuming a rectilinear grid consisting of rectangular cuboid cells, the scalar particle properties are interpolated to the cell centers while the vector properties are interpolated to cell faces. In three dimensions, tri-linear interpolation functions and definitions for the products and gradients of interpolated properties are provided by Snider for three-dimensional models. [2]

Particle stress model

The effects of particle packing are modeled in the MP-PIC method with the use of a function of particle stress. Snider (2001) has suggested calculating the particle stress , as

where is the close-pack volume fraction and , , and are constants.

Limitations of the multiphase particle-in-cell method

Extensions

Applications

Software

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

<span class="mw-page-title-main">Stokes flow</span> Type of fluid flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

Conservation form or Eulerian form refers to an arrangement of an equation or system of equations, usually representing a hyperbolic system, that emphasizes that a property represented is conserved, i.e. a type of continuity equation. The term is usually used in the context of continuum mechanics.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Miniaturizing components has always been a primary goal in the semiconductor industry because it cuts production cost and lets companies build smaller computers and other devices. Miniaturization, however, has increased dissipated power per unit area and made it a key limiting factor in integrated circuit performance. Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers. This article summaries physical concepts that describe the generation and conduction of heat in an integrated circuit, and presents numerical methods that model heat transfer from a macroscopic point of view.

<span class="mw-page-title-main">Potential flow around a circular cylinder</span> Classical solution for inviscid, incompressible flow around a cyclinder

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.

In fluid dynamics, the Basset–Boussinesq–Oseen equation describes the motion of – and forces on – a small particle in unsteady flow at low Reynolds numbers. The equation is named after Joseph Valentin Boussinesq, Alfred Barnard Basset and Carl Wilhelm Oseen.

In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898. The equation was also re-derived by Stephen Bragg and William Hawthorne in 1950 and by Robert R. Long in 1953 and by Herbert Squire in 1956. The Hicks equation without swirl was first introduced by George Gabriel Stokes in 1842. The Grad–Shafranov equation appearing in plasma physics also takes the same form as the Hicks equation.

References

  1. 1 2 Andrews, M.J. and O'Rourke, P.J. (1996). The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particle Flows. International Journal of Multiphase Flow, 22(2):379–402.
  2. 1 2 3 Snider, D.M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. Journal of Computational Physics, 170:523–549.
  3. Snider, D. (2007). Three fundamental granular flow experiments and CPFD predictions. Powder Technology 176: 36-46.
  4. Snider, D.M., O'Rourke, P.J., and Andrews, M.J. (1997). An Incompressible Two-Dimensional Multiphase Particle-In-Cell Model for Dense Particle Flows, NM, LA-17280-MS (Los Alamos National Laboratories, Los Alamos, NM)
  5. 1 2 Sundaresan, S. (2010). Challenges in the Analysis of High-Velocity Gas-Particle Flows in Large Devices, University of Houston Neal Amundson Memorial Lecture Series, 2010.
  6. Snider, D. and Banerjee, S. (2010). Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition). Powder Technology 199(1):100–106
  7. 1 2 Snider, D.M., Clark, S.M., O'Rourke, P.J. (2011). Eulerian–Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chemical Engineering Science 66:1285–1295.
  8. 1 2 Zhao, P., O'Rourke, P.J., Snider, D. Three-dimensional simulation of liquid injection, film formation and transport, in fluidized beds. Particuology 7:337-346
  9. CPFD Software, LLC. Barracuda 14.4 Released. http://www.cpfd-software.com/news/barracuda_14.4_released Retrieved Feb 8, 2011
  10. Blaser, P. and Chandran, R. (2009). Computational Simulation of Fluidization Dynamics Inside a Commercial Biomass Gasifier. AIChE 2009 Annual Meeting.
  11. Williams, K., Snider, D., Guenther, C. (2010) CFD Simulations of the NETL Chemical Looping Experiment, AIChE 2010 National Meeting, http://www.aicheproceedings.org/2010/Fall/data/papers/Paper202402.html Retrieved Feb 8, 2011
  12. Snider, D., Guenther, C., Dalton J., Williams, K. (2010) CPFD Eulerian-Lagrangian Numerical Scheme Applied to the NETL Bench-top Chemical Looping Experiment. Proceedings of the 1st International Conference on Chemical Looping
  13. 1 2 Yeomans, N., and Blaser, P. (2006). Predicting the Process, Foundry Management & Technology, January 2006, pp 48–49.
  14. Blaser, P., and Yeomans, N. (2006). Sand Core Engineering & Process Modeling, Japan Foundry Society, Vol. 2, No. 2, February 2006, pp. 420–427.
  15. Schleg, P. (2003). Technology of Metalcasting, American Foundry Society, Des Plaines, IL, pp. 1 and 39.
  16. Weng, M., Nies, M., and Plackmeyer, J. (2010). Comparison between Measurements and Numerical Simulation of Particle Flow and Combustion at the CFBC Plant Duisburg. 5. Internationaler VGB-Workshop "Betriebserfahrungen mit Wirbelschichtfeuerungen 2010"
  17. Snider, D., Clark, S.(2009). CPFD Eulerian-Lagrangian Method for Three Dimensional Thermal Reacting Flow. 2009 AIChE National Meeting, http://www.aicheproceedings.org/2009/Fall/data/papers/Paper149130.html Retrieved Feb 19, 2011
  18. Williams, K., Snider, D., Badalassi, V., Reddy Karri, S.B., Knowlton, T.M., and Cocco, R.A. (2006). Computational Particle Fluid Dynamics Simulations and Validation for Cyclones: High and Low Loadings. AIChE 2006 National Meeting http://aiche.confex.com/aiche/2006/preliminaryprogram/abstract_76001.htm Retrieved Feb. 19, 2011
  19. Cocco, R. and Williams, K. (2004). Optimization of Particle Residence Time Inside Commercial Dryers with Arena-flow. AIChE 2004 National Meeting
  20. Parker, J., LaMarche, K., Chen, W., Williams, K., Stamato, H., Thibault, S. (2013) CFD simulations for prediction of scaling effects in pharmaceutical fluidized bed processors at three scales, Powder Technology, 235: 115-120.
  21. Karimipour, S. and Pugsley, T. (2009). Application of the Particle-in-Cell Approach for the Simulation of Bubbling Fluidized Beds of Geldhart A Particles, Seventh International Conference on CFD in the Minerals and Process Industries.
  22. Lefebvre, D., Mackenbrock, A., Vidal, V., and Haigh, P. (2005). Development and use of simulation in the design of blown cores and moulds, Foundry Trade Journal, February 2005.
  23. Winartomo, B., Vroomen, U., and Buhrig-Polaczek, A., Pelzer, M. (2005). Multiphase modeling of core shooting processes, International Journal of Cast Metals Research, Vol. 18, No. 1.
  24. O'Rourke, P.J., Snider, D.M. (2010). An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chemical Engineering Science, 65:6014–6028.
  25. Parker, J. (2011). Validation of CFD Model for Polysilicon Deposition and Production of Silicon Fines in a Silane Deposition FBR, International Journal of Chemical Reactor Engineering, Vol. 9, A40