Giant component

Last updated
An Erdos-Renyi-Gilbert random graph with 1000 vertices at the critical edge probability
p
=
1
/
(
n
-
1
)
{\displaystyle p=1/(n-1)}
, showing a large component and many small ones. At this edge probability, the large component is not yet a giant component: it contains only a sublinear number of vertices. Critical 1000-vertex Erdos-Renyi-Gilbert graph.svg
An Erdős–Rényi–Gilbert random graph with 1000 vertices at the critical edge probability , showing a large component and many small ones. At this edge probability, the large component is not yet a giant component: it contains only a sublinear number of vertices.

In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices.

Contents

More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability.

Giant component in Erdős–Rényi model

Giant components are a prominent feature of the Erdős–Rényi model (ER) of random graphs, in which each possible edge connecting pairs of a given set of n vertices is present, independently of the other edges, with probability p. In this model, if for any constant , then with high probability (in the limit as goes to infinity) all connected components of the graph have size O(log n), and there is no giant component. However, for there is with high probability a single giant component, with all other components having size O(log n). For , intermediate between these two possibilities, the number of vertices in the largest component of the graph, is with high probability proportional to . [1]

Giant component is also important in percolation theory. [1] [2] When a fraction of nodes, , is removed randomly from an ER network of degree , there exists a critical threshold, . Above there exists a giant component (largest cluster) of size, . fulfills, . For the solution of this equation is , i.e., there is no giant component.

At , the distribution of cluster sizes behaves as a power law, ~ which is a feature of phase transition.

Alternatively, if one adds randomly selected edges one at a time, starting with an empty graph, then it is not until approximately edges have been added that the graph contains a large component, and soon after that the component becomes giant. More precisely, when t edges have been added, for values of t close to but larger than , the size of the giant component is approximately . [1] However, according to the coupon collector's problem, edges are needed in order to have high probability that the whole random graph is connected.

Graphs with arbitrary degree distributions

A similar sharp threshold between parameters that lead to graphs with all components small and parameters that lead to a giant component also occurs in random graphs with non-uniform degree distributions. The degree distribution does not define a graph uniquely. However under assumption that in all respects other than their degree distribution, the graphs are treated as entirely random, many results on finite/infinite-component sizes are known.

In this model, the existence of the giant component depends only on the first two (mixed) moments of the degree distribution. Let a randomly chosen vertex has degree , then the giant component exists [3] if and only if

which is also written in the form of is the mean degree of the network. Similar expressions are also valid for directed graphs, in which case the degree distribution is two-dimensional. [4] There are three types of connected components in directed graphs. For a randomly chosen vertex:

  1. out-component is a set of vertices that can be reached by recursively following all out-edges forward;
  2. in-component is a set of vertices that can be reached by recursively following all in-edges backward;
  3. weak component is a set of vertices that can be reached by recursively following all edges regardless of their direction.

Criteria for giant component existence in directed and undirected configuration graphs

Let a randomly chosen vertex has in-edges and out edges. By definition, the average number of in- and out-edges coincides so that . If is the generating function of the degree distribution for an undirected network, then can be defined as . For directed networks, generating function assigned to the joint probability distribution can be written with two valuables and as: , then one can define and . The criteria for giant component existence in directed and undirected random graphs are given in the table below:

TypeCriteria
undirected: giant component, [3] or [4]
directed: giant in/out-component, [4] or [4]
directed: giant weak component [5]

See also

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

<span class="mw-page-title-main">Random graph</span> Graph generated by a random process

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

<span class="mw-page-title-main">Automatic differentiation</span> Techniques to evaluate the derivative of a function specified by a computer program

In mathematics and computer algebra, automatic differentiation (AD), also called algorithmic differentiation, computational differentiation, auto-differentiation, or simply autodiff, is a set of techniques to evaluate the partial derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations and elementary functions. By applying the chain rule repeatedly to these operations, partial derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

<span class="mw-page-title-main">Degree distribution</span>

In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network.

In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.

In probability theory and statistical mechanics, the Gaussian free field (GFF) is a Gaussian random field, a central model of random surfaces (random height functions). Sheffield (2007) gives a mathematical survey of the Gaussian free field.

<span class="mw-page-title-main">Erdős–Rényi model</span> Two closely related models for generating random graphs

In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.

<span class="mw-page-title-main">Random geometric graph</span> In graph theory, the mathematically simplest spatial network

In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.

Quantum walks are quantum analogues of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through: (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements.

<span class="mw-page-title-main">Network science</span> Academic field

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes and the connections between the elements or actors as links. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."

In mathematics, the Fortuin–Kasteleyn–Ginibre (FKG) inequality is a correlation inequality, a fundamental tool in statistical mechanics and probabilistic combinatorics, due to Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre (1971). Informally, it says that in many random systems, increasing events are positively correlated, while an increasing and a decreasing event are negatively correlated. It was obtained by studying the random cluster model.

In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of continued fractions to higher dimensions.

<span class="mw-page-title-main">Structural cut-off</span>

The structural cut-off is a concept in network science which imposes a degree cut-off in the degree distribution of a finite size network due to structural limitations. Networks with vertices with degree higher than the structural cut-off will display structural disassortativity.

Robustness, the ability to withstand failures and perturbations, is a critical attribute of many complex systems including complex networks.

In network science, a critical point is a value of average degree, which separates random networks that have a giant component from those that do not. Considering a random network with an average degree the critical point is

Evolution of a random network is a dynamical process, usually leading to emergence of giant component accompanied with striking consequences on the network topology. To quantify this process, there is a need of inspection on how the size of the largest connected cluster within the network, , varies with the average degree . Networks change their topology as they evolve, undergoing phase transitions. Phase transitions are generally known from physics, where it occurs as matter changes state according to its thermal energy level, or when ferromagnetic properties emerge in some materials as they are cooling down. Such phase transitions take place in matter because it is a network of particles, and as such, rules of network phase transition directly apply to it. Phase transitions in networks happen as links are added to a network, meaning that having N nodes, in each time increment, a link is placed between a randomly chosen pair of them. The transformation from a set of disconnected nodes to a fully connected network is called the evolution of a network.

In mathematics and theoretical computer science, analysis of Boolean functions is the study of real-valued functions on or from a spectral perspective. The functions studied are often, but not always, Boolean-valued, making them Boolean functions. The area has found many applications in combinatorics, social choice theory, random graphs, and theoretical computer science, especially in hardness of approximation, property testing, and PAC learning.

<span class="mw-page-title-main">Configuration model</span>

In network science, the configuration model is a method for generating random networks from a given degree sequence. It is widely used as a reference model for real-life social networks, because it allows the modeler to incorporate arbitrary degree distributions.

<span class="mw-page-title-main">Maximum-entropy random graph model</span>

Maximum-entropy random graph models are random graph models used to study complex networks subject to the principle of maximum entropy under a set of structural constraints, which may be global, distributional, or local.

<span class="mw-page-title-main">Soft configuration model</span> Random graph model in applied mathematics

In applied mathematics, the soft configuration model (SCM) is a random graph model subject to the principle of maximum entropy under constraints on the expectation of the degree sequence of sampled graphs. Whereas the configuration model (CM) uniformly samples random graphs of a specific degree sequence, the SCM only retains the specified degree sequence on average over all network realizations; in this sense the SCM has very relaxed constraints relative to those of the CM ("soft" rather than "sharp" constraints). The SCM for graphs of size has a nonzero probability of sampling any graph of size , whereas the CM is restricted to only graphs having precisely the prescribed connectivity structure.

References

  1. 1 2 3 Bollobás, Béla (2001), "6. The Evolution of Random Graphs—The Giant Component", Random Graphs, Cambridge studies in advanced mathematics, vol. 73 (2nd ed.), Cambridge University Press, pp. 130–159, ISBN   978-0-521-79722-1 .
  2. Newman, M. E. J. (2010). Networks : an introduction. New York: Oxford University Press. OCLC   456837194.
  3. 1 2 Molloy, Michael; Reed, Bruce (1995). "A critical point for random graphs with a given degree sequence". Random Structures & Algorithms. 6 (2–3): 161–180. doi:10.1002/rsa.3240060204. ISSN   1042-9832.
  4. 1 2 3 4 Newman, M. E. J.; Strogatz, S. H.; Watts, D. J. (2001-07-24). "Random graphs with arbitrary degree distributions and their applications". Physical Review E. 64 (2): 026118. arXiv: cond-mat/0007235 . Bibcode:2001PhRvE..64b6118N. doi: 10.1103/physreve.64.026118 . ISSN   1063-651X. PMID   11497662.
  5. Kryven, Ivan (2016-07-27). "Emergence of the giant weak component in directed random graphs with arbitrary degree distributions". Physical Review E. 94 (1): 012315. arXiv: 1607.03793 . Bibcode:2016PhRvE..94a2315K. doi:10.1103/physreve.94.012315. ISSN   2470-0045. PMID   27575156. S2CID   206251373.