Tetraoctagonal tiling

Last updated
Tetraoctagonal tiling
H2 tiling 248-2.png
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (4.8)2
Schläfli symbol r{8,4} or
rr{8,8}
rr(4,4,4)
t0,1,2,3(,4,,4)
Wythoff symbol 2 | 8 4
Coxeter diagram CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png or CDel node 1.pngCDel split1-84.pngCDel nodes.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png or CDel node.pngCDel split1-88.pngCDel nodes 11.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel labelinfin.png
Symmetry group [8,4], (*842)
[8,8], (*882)
[(4,4,4)], (*444)
[(,4,,4)], (*4242)
Dual Order-8-4 quasiregular rhombic tiling
Properties Vertex-transitive edge-transitive

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

Contents

Constructions

There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,4] or (*842) orbifold symmetry. Removing the mirror between the order 2 and 4 points, [8,4,1+], gives [8,8], (*882). Removing the mirror between the order 2 and 8 points, [1+,8,4], gives [(4,4,4)], (*444). Removing both mirrors, [1+,8,4,1+], leaves a rectangular fundamental domain, [(∞,4,∞,4)], (*4242).

Four uniform constructions of 4.8.4.8
NameTetra-octagonal tilingRhombi-octaoctagonal tiling
Image Uniform tiling 84-t1.png Uniform tiling 88-t02.png Uniform tiling 444-t01.png 4242-uniform tiling-verf4848.png
Symmetry [8,4]
(*842)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node c3.png
[8,8] = [8,4,1+]
(*882)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1-88.pngCDel nodeab c2.png
[(4,4,4)] = [1+,8,4]
(*444)
CDel node h0.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node c3.png = CDel label4.pngCDel branch c2.pngCDel split2-44.pngCDel node c3.png
[(∞,4,∞,4)] = [1+,8,4,1+]
(*4242)
CDel node h0.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch c2.pngCDel 4a4b.pngCDel branch c2.pngCDel labelinfin.png or CDel nodeab c2.pngCDel 4a4b-cross.pngCDel nodeab c2.png
Schläfli r{8,4}rr{8,8}
=r{8,4}1/2
r(4,4,4)
=r{4,8}1/2
t0,1,2,3(∞,4,∞,4)
=r{8,4}1/4
Coxeter CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel node.pngCDel split1-88.pngCDel nodes 11.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel labelinfin.png or CDel nodes 11.pngCDel 4a4b-cross.pngCDel nodes 11.png

Symmetry

The dual tiling has face configuration V4.8.4.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4242), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*42) orbifold.

Ord84 qreg rhombic til.png H2chess 248e.png
*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolicParacompactNoncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures Uniform tiling 432-t1.png Uniform tiling 44-t1.png H2-5-4-rectified.svg H2 tiling 246-2.png H2 tiling 247-2.png H2 tiling 248-2.png H2 tiling 24i-2.png
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
Dimensional family of quasiregular polyhedra and tilings: (8.n)2
Symmetry
*8n2
[n,8]
Hyperbolic...ParacompactNoncompact
*832
[3,8]
*842
[4,8]
*852
[5,8]
*862
[6,8]
*872
[7,8]
*882
[8,8]...
*82
[,8]
 
[iπ/λ,8]
Coxeter CDel node.pngCDel 3.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel ultra.pngCDel node 1.pngCDel 8.pngCDel node.png
Quasiregular
figures
configuration
H2-8-3-rectified.svg
3.8.3.8
H2 tiling 248-2.png
4.8.4.8
H2 tiling 258-2.png
8.5.8.5
H2 tiling 268-2.png
8.6.8.6
H2 tiling 278-2.png
8.7.8.7
H2 tiling 288-2.png
8.8.8.8
H2 tiling 25i-2.png
8..8.
 
8..8.
Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [,4,] (*4222) index 2 subsymmetries)
(And [(,4,,4)] (*4242) index 4 subsymmetry)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-88.pngCDel nodes.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png
= CDel label4.pngCDel branch 11.pngCDel 4a4b-cross.pngCDel branch 11.pngCDel label4.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-88.pngCDel nodes 11.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node.pngCDel split1-88.pngCDel nodes 11.png
= CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.pngCDel label4.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
= CDel label4.pngCDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel 2.png
= CDel label4.pngCDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 248-1.png H2 tiling 248-3.png H2 tiling 248-2.png H2 tiling 248-6.png H2 tiling 248-4.png H2 tiling 248-5.png H2 tiling 248-7.png
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 248b.png H2chess 248f.png H2chess 248a.png H2chess 248e.png H2chess 248c.png H2chess 248d.png H2checkers 248.png
V84 V4.16.16V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
= CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node.png
= CDel node h.pngCDel split1-88.pngCDel nodes hh.png
CDel node.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
= CDel label4.pngCDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png
CDel node.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
= CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-88.pngCDel nodes 10lu.png
CDel node h.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h.png
= CDel label4.pngCDel branch hh.pngCDel 2a2b-cross.pngCDel nodes hh.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 444-t0.png Uniform tiling 84-h01.png Uniform tiling 443-t1.png Uniform tiling 444-snub.png Uniform tiling 88-t0.png H2-5-4-primal.svg Uniform tiling 84-snub.png
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png Uniform dual tiling 433-t0.png Uniform tiling 88-t2.png H2-5-4-dual.svg
V(4.4)4V3.(3.8)2V(4.4.4)2V(3.4)3V88V4.44V3.3.4.3.8
Uniform octaoctagonal tilings
Symmetry: [8,8], (*882)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node 1.png
H2 tiling 288-1.png H2 tiling 288-3.png H2 tiling 288-2.png H2 tiling 288-6.png H2 tiling 288-4.png H2 tiling 288-5.png H2 tiling 288-7.png
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.png
H2chess 288b.png H2chess 288f.png H2chess 288a.png H2chess 288e.png H2chess 288c.png H2chess 288d.png H2checkers 288.png
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel label4.pngCDel branch 10ru.pngCDel split2-88.pngCDel node.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h1.pngCDel 8.pngCDel node.png = CDel nodes 11.pngCDel 4a4b-cross.pngCDel nodes.pngCDel node.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h1.png = CDel node.pngCDel split1-88.pngCDel branch 01ld.pngCDel node h.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node h.png
Uniform tiling 88-h0.png Uniform tiling 444-t0.png Uniform tiling 88-h0.png Uniform tiling 443-t1.png Uniform tiling 88-snub.png
h{8,8}s{8,8} hr{8,8} s{8,8}h{8,8} hrr{8,8} sr{8,8}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png
V(4.8)8V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8V(4.8)8 V46 V3.3.8.3.8
Uniform (4,4,4) tilings
Symmetry: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node h1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
H2 tiling 444-1.png H2 tiling 444-3.png H2 tiling 444-2.png H2 tiling 444-6.png H2 tiling 444-4.png H2 tiling 444-5.png H2 tiling 444-7.png Uniform tiling 444-snub.png H2 tiling 288-4.png H2 tiling 344-2.png
t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}1/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}1/2
t0,1,2(4,4,4)
t{4,8}1/2
s(4,4,4)
s{4,8}1/2
h(4,4,4)
h{4,8}1/2
hr(4,4,4)
hr{4,8}1/2
Uniform duals
H2chess 444b.png H2chess 444f.png H2chess 444a.png H2chess 444e.png H2chess 444c.png H2chess 444d.png H2checkers 444.png Uniform dual tiling 433-t0.png H2 tiling 288-1.png H2 tiling 266-2.png
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3

See also

Related Research Articles

<span class="mw-page-title-main">Truncated tetrahexagonal tiling</span>

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{6,4}.

<span class="mw-page-title-main">Tetrahexagonal tiling</span>

In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.

<span class="mw-page-title-main">Rhombitetrahexagonal tiling</span>

In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.

<span class="mw-page-title-main">Truncated order-4 hexagonal tiling</span>

In geometry, the truncated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,4}. A secondary construction tr{6,6} is called a truncated hexahexagonal tiling with two colors of dodecagons.

<span class="mw-page-title-main">Truncated order-6 square tiling</span>

In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.

<span class="mw-page-title-main">Truncated tetrapentagonal tiling</span> A uniform tiling of the hyperbolic plane

In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2{4,5} or tr{4,5}.

<span class="mw-page-title-main">Order-6 hexagonal tiling</span>

In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.

<span class="mw-page-title-main">Order-4 octagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,4}. Its checkerboard coloring can be called a octaoctagonal tiling, and Schläfli symbol of r{8,8}.

<span class="mw-page-title-main">Truncated order-4 octagonal tiling</span>

In geometry, the truncated order-4 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,4}. A secondary construction t0,1,2{8,8} is called a truncated octaoctagonal tiling with two colors of hexakaidecagons.

<span class="mw-page-title-main">Order-8 square tiling</span>

In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.

<span class="mw-page-title-main">Rhombitetraoctagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.

<span class="mw-page-title-main">Truncated tetraoctagonal tiling</span> Semiregular tiling in geometry

In geometry, the truncated tetraoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr{8,4}.

<span class="mw-page-title-main">Truncated order-8 octagonal tiling</span>

In geometry, the truncated order-8 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,8}.

<span class="mw-page-title-main">Order-4 apeirogonal tiling</span>

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

<span class="mw-page-title-main">Truncated tetraapeirogonal tiling</span>

In geometry, the truncated tetraapeirogonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one apeirogon on each vertex. It has Schläfli symbol of tr{∞,4}.

<span class="mw-page-title-main">Rhombitetraapeirogonal tiling</span> Uniform tiling of the hyperbolic plane

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

<span class="mw-page-title-main">Order-6 octagonal tiling</span>

In geometry, the order-6 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,6}.

<span class="mw-page-title-main">Order-8 hexagonal tiling</span>

In geometry, the order-8 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,8}.

<span class="mw-page-title-main">Hexaoctagonal tiling</span>

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.

<span class="mw-page-title-main">Truncated order-8 hexagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the truncated order-8 hexagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of t{6,8}.

References