Pinwheel tiling

Last updated

In geometry, pinwheel tilings are non-periodic tilings defined by Charles Radin and based on a construction due to John Conway. They are the first known non-periodic tilings to each have the property that their tiles appear in infinitely many orientations.

Contents

Definition

Conway's triangle decomposition into smaller similar triangles. Pinwheel 1.svg
Conway's triangle decomposition into smaller similar triangles.

Let be the right triangle with side length , and . Conway noticed that can be divided in five isometric copies of its image by the dilation of factor . [1]

The increasing sequence of triangles which defines Conway's tiling of the plane. Pinwheel 2.gif
The increasing sequence of triangles which defines Conway's tiling of the plane.
A pinwheel tiling: tiles can be grouped in sets of five (thick lines) to form a new pinwheel tiling (up to rescaling) Pinwheel 3.svg
A pinwheel tiling: tiles can be grouped in sets of five (thick lines) to form a new pinwheel tiling (up to rescaling)

The pinwheel tiling is obtained by repeatedly inflating by a factor of and then subdividing each tile in this manner. Conversely, the tiles of the pinwheel tiling can be grouped into groups of five that form a larger pinwheel tiling. In this tiling, isometric copies of appear in infinitely many orientations because the small angle of , , is not a rational multiple of . Radin found a collection of five prototiles, each of which is a marking of , so that the matching rules on these tiles and their reflections enforce the pinwheel tiling. [1] All of the vertices have rational coordinates, and tile orientations are uniformly distributed around the circle. [2]

Generalizations

Radin and Conway proposed a three-dimensional analogue which was dubbed the quaquaversal tiling. [3] There are other variants and generalizations of the original idea. [4]

Pinwheel fractal Pinwheel fractal.png
Pinwheel fractal

One gets a fractal by iteratively dividing in five isometric copies, following the Conway construction, and discarding the middle triangle (ad infinitum). This "pinwheel fractal" has Hausdorff dimension .

Use in architecture

Federation Square's sandstone facade Federation-square-sandstone-facade.jpg
Federation Square's sandstone façade

Federation Square, a building complex in Melbourne, Australia, features the pinwheel tiling. In the project, the tiling pattern is used to create the structural sub-framing for the facades, allowing for the facades to be fabricated off-site, in a factory and later erected to form the facades. The pinwheel tiling system was based on the single triangular element, composed of zinc, perforated zinc, sandstone or glass (known as a tile), which was joined to 4 other similar tiles on an aluminum frame, to form a "panel". Five panels were affixed to a galvanized steel frame, forming a "mega-panel", which were then hoisted onto support frames for the facade. The rotational positioning of the tiles gives the facades a more random, uncertain compositional quality, even though the process of its construction is based on pre-fabrication and repetition. The same pinwheel tiling system is used in the development of the structural frame and glazing for the "Atrium" at Federation Square, although in this instance, the pin-wheel grid has been made "3-dimensional" to form a portal frame structure.

Related Research Articles

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with four faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

In mathematics, Catalan's constantG, is defined by

<span class="mw-page-title-main">Koch snowflake</span> Fractal curve

The Koch snowflake is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch.

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Menger sponge</span> Three-dimensional fractal

In mathematics, the Menger sponge is a fractal curve. It is a three-dimensional generalization of the one-dimensional Cantor set and two-dimensional Sierpinski carpet. It was first described by Karl Menger in 1926, in his studies of the concept of topological dimension.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Trigonometric substitution</span> Technique of integral evaluation

In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

In mathematics, a quadratic integral is an integral of the form

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.

<span class="mw-page-title-main">Snub trihexagonal tiling</span>

In geometry, the snub hexagonal tiling is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> Varying methods used to calculate pi

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

<span class="mw-page-title-main">Quaquaversal tiling</span>

The quaquaversal tiling is a nonperiodic tiling of Euclidean 3-space introduced by John Conway and Charles Radin. It is analogous to the pinwheel tiling in 2 dimensions having tile orientations that are dense in SO(3). The basic solid tiles are 30-60-90 triangular prisms arranged in a pattern such that some copies are rotated by π/3, and some are rotated by π/2 in a perpendicular direction.

<span class="mw-page-title-main">Ammann–Beenker tiling</span> Non-periodic tiling of the plane

In geometry, an Ammann–Beenker tiling is a nonperiodic tiling which can be generated either by an aperiodic set of prototiles as done by Robert Ammann in the 1970s, or by the cut-and-project method as done independently by F. P. M. Beenker. They are one of the five sets of tilings discovered by Ammann and described in Tilings and patterns.

<span class="mw-page-title-main">Mandelbulb</span> Three-dimensional fractal

The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and in 2009 further developed by Daniel White and Paul Nylander using spherical coordinates.

An n-flake, polyflake, or Sierpinski n-gon, is a fractal constructed starting from an n-gon. This n-gon is replaced by a flake of smaller n-gons, such that the scaled polygons are placed at the vertices, and sometimes in the center. This process is repeated recursively to result in the fractal. Typically, there is also the restriction that the n-gons must touch yet not overlap.

<span class="mw-page-title-main">Rauzy fractal</span>

In mathematics, the Rauzy fractal is a fractal set associated with the Tribonacci substitution

In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general transformation formula is:

Charles Lewis Radin is an American mathematician, known for his work on aperiodic tilings and in particular for defining the pinwheel tiling and, with John Horton Conway, the quaquaversal tiling.

The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.

References

  1. 1 2 Radin, C. (May 1994). "The Pinwheel Tilings of the Plane". Annals of Mathematics . 139 (3): 661–702. CiteSeerX   10.1.1.44.9723 . doi:10.2307/2118575. JSTOR   2118575.
  2. Charles Radin (1997). The mathematics of long-range aperiodic order. Dordrecht ; Boston: Kluwer Academic Publishers. pp. 499–519. ISBN   0-7923-4506-1.
  3. Conway, John H.; Radin, Charles (1998), "Quaquaversal tilings and rotations", Inventiones Mathematicae, 132 (1): 179–188, Bibcode:1998InMat.132..179C, doi:10.1007/s002220050221, MR   1618635, S2CID   14194250 .
  4. Sadun, L. (January 1998). "Some Generalizations of the Pinwheel Tiling". Discrete and Computational Geometry . 20 (1): 79–110. arXiv: math/9712263 . CiteSeerX   10.1.1.241.1917 . doi:10.1007/pl00009379. S2CID   6890001.