Convex uniform honeycomb

Last updated
The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra. Tetrahedral-octahedral honeycomb.png
The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra.

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

Contents

Twenty-eight such honeycombs are known:

They can be considered the three-dimensional analogue to the uniform tilings of the plane.

The Voronoi diagram of any lattice forms a convex uniform honeycomb in which the cells are zonohedra.

History

Only 14 of the convex uniform polyhedra appear in these patterns:

The icosahedron, snub cube, and square antiprism appear in some alternations, but those honeycombs cannot be realised with all edges unit length.

Names

This set can be called the regular and semiregular honeycombs. It has been called the Archimedean honeycombs by analogy with the convex uniform (non-regular) polyhedra, commonly called Archimedean solids. Recently Conway has suggested naming the set as the Architectonic tessellations and the dual honeycombs as the Catoptric tessellations .

The individual honeycombs are listed with names given to them by Norman Johnson. (Some of the terms used below are defined in Uniform 4-polytope#Geometric derivations for 46 nonprismatic Wythoffian uniform 4-polytopes)

For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21–25, 31–34, 41–49, 51–52, 61–65), and Grünbaum(1-28). Coxeter uses δ4 for a cubic honeycomb, hδ4 for an alternated cubic honeycomb, qδ4 for a quarter cubic honeycomb, with subscripts for other forms based on the ring patterns of the Coxeter diagram.

Compact Euclidean uniform tessellations (by their infinite Coxeter group families)

Fundamental domains in a cubic element of three groups. Coxeter-Dynkin 3-space groups.png
Fundamental domains in a cubic element of three groups.
Family correspondences Coxeter diagram affine rank4 correspondence.png
Family correspondences

The fundamental infinite Coxeter groups for 3-space are:

  1. The , [4,3,4], cubic, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png (8 unique forms plus one alternation)
  2. The , [4,31,1], alternated cubic, CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png (11 forms, 3 new)
  3. The cyclic group, [(3,3,3,3)] or [3[4]], CDel branch.pngCDel 3ab.pngCDel branch.png (5 forms, one new)

There is a correspondence between all three families. Removing one mirror from produces , and removing one mirror from produces . This allows multiple constructions of the same honeycombs. If cells are colored based on unique positions within each Wythoff construction, these different symmetries can be shown.

In addition there are 5 special honeycombs which don't have pure reflectional symmetry and are constructed from reflectional forms with elongation and gyration operations.

The total unique honeycombs above are 18.

The prismatic stacks from infinite Coxeter groups for 3-space are:

  1. The ×, [4,4,2,∞] prismatic group, CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png (2 new forms)
  2. The ×, [6,3,2,∞] prismatic group, CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png (7 unique forms)
  3. The ×, [(3,3,3),2,∞] prismatic group, CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png (No new forms)
  4. The ××, [∞,2,∞,2,∞] prismatic group, CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png (These all become a cubic honeycomb)

In addition there is one special elongated form of the triangular prismatic honeycomb.

The total unique prismatic honeycombs above (excluding the cubic counted previously) are 10.

Combining these counts, 18 and 10 gives us the total 28 uniform honeycombs.

The C̃3, [4,3,4] group (cubic)

The regular cubic honeycomb, represented by Schläfli symbol {4,3,4}, offers seven unique derived uniform honeycombs via truncation operations. (One redundant form, the runcinated cubic honeycomb, is included for completeness though identical to the cubic honeycomb.) The reflectional symmetry is the affine Coxeter group [4,3,4]. There are four index 2 subgroups that generate alternations: [1+,4,3,4], [(4,3,4,2+)], [4,3+,4], and [4,3,4]+, with the first two generated repeated forms, and the last two are nonuniform.

C3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
OrderHoneycombs
Pm3m
(221)
4:2[4,3,4]CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png×1CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 1, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 2, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 3, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 4,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 5, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 6
Fm3m
(225)
2:2[1+,4,3,4]
↔ [4,31,1]
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node c2.png
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 4.pngCDel node c2.png
HalfCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 7, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 11, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 12, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png 13
I43m
(217)
4o:2[[(4,3,4,2+)]]CDel branch.pngCDel 4a4b.pngCDel nodes hh.pngHalf × 2CDel branch.pngCDel 4a4b.pngCDel nodes hh.png (7),
Fd3m
(227)
2+:2[[1+,4,3,4,1+]]
↔ [[3[4]]]
CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png
CDel branch 11.pngCDel 3ab.pngCDel branch.png
Quarter × 2CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png 10,
Im3m
(229)
8o:2[[4,3,4]]CDel branch c2.pngCDel 4a4b.pngCDel nodeab c1.png×2

CDel branch.pngCDel 4a4b.pngCDel nodes 11.png (1), CDel branch 11.pngCDel 4a4b.pngCDel nodes.png 8, CDel branch 11.pngCDel 4a4b.pngCDel nodes 11.png 9

[4,3,4], space group Pm3m (221)
Reference
Indices
Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in cubic honeycomb
Frames
(Perspective)
Vertex figure Dual cell
(0)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
CDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
(2)
CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png
(3)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
AltSolids
(Partial)
J11,15
A1
W1
G22
δ4
cubic (chon)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t0{4,3,4}
{4,3,4}
   (8)
Hexahedron.png
(4.4.4)
  Partial cubic honeycomb.png Cubic honeycomb.png Cubic honeycomb verf.svg
octahedron
Cubic full domain.png
Cube, CDel node f1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
J12,32
A15
W14
G7
O1
rectified cubic (rich)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t1{4,3,4}
r{4,3,4}
(2)
Octahedron.png
(3.3.3.3)
  (4)
Cuboctahedron.png
(3.4.3.4)
  Rectified cubic honeycomb.png Rectified cubic tiling.png Rectified cubic honeycomb verf.png
cuboid
Cubic square bipyramid.png
Square bipyramid
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png
J13
A14
W15
G8
t1δ4
O15
truncated cubic (tich)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{4,3,4}
t{4,3,4}
(1)
Octahedron.png
(3.3.3.3)
  (4)
Truncated hexahedron.png
(3.8.8)
  Truncated cubic honeycomb.png Truncated cubic tiling.png Truncated cubic honeycomb verf.png
square pyramid
Cubic square pyramid.png
Isosceles square pyramid
J14
A17
W12
G9
t0,2δ4
O14
cantellated cubic (srich)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,2{4,3,4}
rr{4,3,4}
(1)
Cuboctahedron.png
(3.4.3.4)
(2)
Hexahedron.png
(4.4.4)
 (2)
Small rhombicuboctahedron.png
(3.4.4.4)
  Cantellated cubic honeycomb.jpg Cantellated cubic tiling.png Cantellated cubic honeycomb verf.png
oblique triangular prism
Quarter oblate octahedrille cell.png
Triangular bipyramid
J17
A18
W13
G25
t0,1,2δ4
O17
cantitruncated cubic (grich)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,2{4,3,4}
tr{4,3,4}
(1)
Truncated octahedron.png
(4.6.6)
(1)
Hexahedron.png
(4.4.4)
 (2)
Great rhombicuboctahedron.png
(4.6.8)
  Cantitruncated Cubic Honeycomb.svg Cantitruncated cubic tiling.png Cantitruncated cubic honeycomb verf.png
irregular tetrahedron
Triangular pyramidille cell1.png
Triangular pyramidille
J18
A19
W19
G20
t0,1,3δ4
O19
runcitruncated cubic (prich)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{4,3,4}
(1)
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
Hexahedron.png
(4.4.4)
(2)
Octagonal prism.png
(4.4.8)
(1)
Truncated hexahedron.png
(3.8.8)
  Runcitruncated cubic honeycomb.jpg Runcitruncated cubic tiling.png Runcitruncated cubic honeycomb verf.png
oblique trapezoidal pyramid
Square quarter pyramidille cell.png
Square quarter pyramidille
J21,31,51
A2
W9
G1
hδ4
O21
alternated cubic (octet)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
h{4,3,4}
   (8)
Tetrahedron.png
(3.3.3)
(6)
Octahedron.png
(3.3.3.3)
Tetrahedral-octahedral honeycomb.png Alternated cubic tiling.png Alternated cubic honeycomb verf.svg
cuboctahedron
Dodecahedrille cell.png
Dodecahedrille
J22,34
A21
W17
G10
h2δ4
O25
Cantic cubic (tatoh)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Cuboctahedron.png (3.4.3.4)
 (2)
Truncated tetrahedron.png (3.6.6)
(2)
Truncated octahedron.png (4.6.6)
Truncated Alternated Cubic Honeycomb.svg Truncated alternated cubic tiling.png Truncated alternated cubic honeycomb verf.png
rectangular pyramid
Half oblate octahedrille cell.png
Half oblate octahedrille
J23
A16
W11
G5
h3δ4
O26
Runcic cubic (sratoh)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Hexahedron.png
(4.4.4)
 (1)
Tetrahedron.png
(3.3.3)
(3)
Small rhombicuboctahedron.png
(3.4.4.4)
Runcinated alternated cubic honeycomb.jpg Runcinated alternated cubic tiling.png Runcinated alternated cubic honeycomb verf.png
tapered triangular prism
Quarter cubille cell.png
Quarter cubille
J24
A20
W16
G21
h2,3δ4
O28
Runcicantic cubic (gratoh)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Truncated hexahedron.png
(3.8.8)
 (1)
Truncated tetrahedron.png
(3.6.6)
(2)
Great rhombicuboctahedron.png
(4.6.8)
Cantitruncated alternated cubic honeycomb.png Cantitruncated alternated cubic tiling.png Runcitruncated alternate cubic honeycomb verf.png
Irregular tetrahedron
Half pyramidille cell.png
Half pyramidille
Nonuniformb snub rectified cubic (serch)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
sr{4,3,4}
(1)
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
(1)
Tetrahedron.png
(3.3.3)
CDel node h.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node.png
 (2)
Snub hexahedron.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
(4)
Tetrahedron.png
(3.3.3)
Alternated cantitruncated cubic honeycomb.png Alternated cantitruncated cubic honeycomb verf.png
Irr. tridiminished icosahedron
Nonuniform Cantic snub cubic (casch)
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
2s0{4,3,4}
(1)
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
(2)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
(3)
Triangular prism.png
(3.4.4)
NonuniformRuncicantic snub cubic (rusch)
CDel node h.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
(1)
Cuboctahedron.png
(3.4.3.4)
(2)
Cube rotorotational symmetry.png
(4.4.4)
(1)
Tetrahedron.png
(3.3.3)
(1)
Truncated tetrahedron.png
(3.6.6)
(3)
Triangular cupola.png
Tricup
Nonuniform Runcic cantitruncated cubic (esch)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
sr3{4,3,4}
(1)
Snub hexahedron.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
(1)
Tetragonal prism.png
(4.4.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node 1.png
(1)
Cube rotorotational symmetry.png
(4.4.4)
CDel node h.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node 1.png
(1)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
(3)
Triangular prism.png
(3.4.4)
[[4,3,4]] honeycombs, space group Im3m (229)
Reference
Indices
Honeycomb name
Coxeter diagram
CDel branch c1.pngCDel 4a4b.pngCDel nodeab c2.png
and Schläfli symbol
Cell counts/vertex
and positions in cubic honeycomb
Solids
(Partial)
Frames
(Perspective)
Vertex figure Dual cell
(0,3)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(1,2)
CDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png
Alt
J11,15
A1
W1
G22
δ4
O1
runcinated cubic
(same as regular cubic) (chon)
CDel branch.pngCDel 4a4b.pngCDel nodes 11.png
t0,3{4,3,4}
(2)
Hexahedron.png
(4.4.4)
(6)
Hexahedron.png
(4.4.4)
  Runcinated cubic honeycomb.png Cubic honeycomb.png Runcinated cubic honeycomb verf.png
octahedron
Cubic full domain.png
Cube
J16
A3
W2
G28
t1,2δ4
O16
bitruncated cubic (batch)
CDel branch 11.pngCDel 4a4b.pngCDel nodes.png
t1,2{4,3,4}
2t{4,3,4}
(4)
Truncated octahedron.png
(4.6.6)
   Bitruncated cubic honeycomb.png Bitruncated cubic tiling.png Bitruncated cubic honeycomb verf.png
(disphenoid)
Oblate tetrahedrille cell.png
Oblate tetrahedrille
J19
A22
W18
G27
t0,1,2,3δ4
O20
omnitruncated cubic (gippich)
CDel branch 11.pngCDel 4a4b.pngCDel nodes 11.png
t0,1,2,3{4,3,4}
(2)
Great rhombicuboctahedron.png
(4.6.8)
(2)
Octagonal prism.png
(4.4.8)
  Omnitruncated cubic honeycomb.jpg Omnitruncated cubic tiling.png Omnitruncated cubic honeycomb verf.png
irregular tetrahedron
Fundamental tetrahedron1.png
Eighth pyramidille
J21,31,51
A2
W9
G1
hδ4
O27
Quarter cubic honeycomb (batatoh)
CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png
ht0ht3{4,3,4}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
Quarter cubic honeycomb2.png Bitruncated alternated cubic tiling.png T01 quarter cubic honeycomb verf2.png
elongated triangular antiprism
Oblate cubille cell.png
Oblate cubille
J21,31,51
A2
W9
G1
hδ4
O21
Alternated runcinated cubic (octet)
(same as alternated cubic)
CDel branch.pngCDel 4a4b.pngCDel nodes hh.png
ht0,3{4,3,4}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
(6)
Uniform polyhedron-33-t2.png
(3.3.3)
(6)
Uniform polyhedron-33-t1.png
(3.3.3.3)
Tetrahedral-octahedral honeycomb2.png Alternated cubic tiling.png Alternated cubic honeycomb verf.svg
cuboctahedron
Nonuniform Biorthosnub cubic honeycomb (gabreth)
CDel branch 11.pngCDel 4a4b.pngCDel nodes hh.png
2s0,3{(4,2,4,3)}
(2)
Truncated octahedron.png
(4.6.6)
(2)
Cube rotorotational symmetry.png
(4.4.4)
(2)
Cantic snub hexagonal hosohedron2.png
(4.4.6)
Nonuniforma Alternated bitruncated cubic (bisch)
CDel branch hh.pngCDel 4a4b.pngCDel nodes.png
h2t{4,3,4}
Uniform polyhedron-43-h01.svg (4)
(3.3.3.3.3)
  Tetrahedron.png (4)
(3.3.3)
Alternated bitruncated cubic honeycomb2.png Alternated bitruncated cubic honeycomb verf.png Ten-of-diamonds decahedron in cube.png
NonuniformCantic bisnub cubic (cabisch)
CDel branch hh.pngCDel 4a4b.pngCDel nodes 11.png
2s0,3{4,3,4}
(2)
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
(2)
Tetragonal prism.png
(4.4.4)
(2)
Cube rotorotational symmetry.png
(4.4.4)
Nonuniformc Alternated omnitruncated cubic (snich)
CDel branch hh.pngCDel 4a4b.pngCDel nodes hh.png
ht0,1,2,3{4,3,4}
(2)
Snub hexahedron.png
(3.3.3.3.4)
(2)
Square antiprism.png
(3.3.3.4)
(4)
Tetrahedron.png
(3.3.3)
  Snub cubic honeycomb verf.png

3, [4,31,1] group

The , [4,3] group offers 11 derived forms via truncation operations, four being unique uniform honeycombs. There are 3 index 2 subgroups that generate alternations: [1+,4,31,1], [4,(31,1)+], and [4,31,1]+. The first generates repeated honeycomb, and the last two are nonuniform but included for completeness.

The honeycombs from this group are called alternated cubic because the first form can be seen as a cubic honeycomb with alternate vertices removed, reducing cubic cells to tetrahedra and creating octahedron cells in the gaps.

Nodes are indexed left to right as 0,1,0',3 with 0' being below and interchangeable with 0. The alternate cubic names given are based on this ordering.

B3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
OrderHoneycombs
Fm3m
(225)
2:2[4,31,1]
↔ [4,3,4,1+]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel nodes 10lu.png
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
×1CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 1, CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 2, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 3, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 4
Fm3m
(225)
2:2<[1+,4,31,1]>
↔ <[3[4]]>
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodeab c1.png
CDel node 1.pngCDel split1.pngCDel nodeab c1.pngCDel split2.pngCDel node.png
×2CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png (1), CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png (3)
Pm3m
(221)
4:2<[4,31,1]>CDel node c3.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png×2

CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png 5, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png 6, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png 7, CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png (6), CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png 9, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 10, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 11

[4,31,1] uniform honeycombs, space group Fm3m (225)
Referenced
indices
Honeycomb name
Coxeter diagrams
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
(0)
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
(1)
CDel nodea.pngCDel 2.pngCDel nodeb.pngCDel 2.pngCDel nodea.png
(0')
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
(3)
CDel nodea.pngCDel 3a.pngCDel branch.png
J21,31,51
A2
W9
G1
hδ4
O21
Alternated cubic (octet)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
   Octahedron.png (6)
(3.3.3.3)
Tetrahedron.png (8)
(3.3.3)
Tetrahedral-octahedral honeycomb.png Alternated cubic tiling.png Alternated cubic honeycomb verf.svg
cuboctahedron
J22,34
A21
W17
G10
h2δ4
O25
Cantic cubic (tatoh)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png (1)
(3.4.3.4)
  Truncated octahedron.png (2)
(4.6.6)
Truncated tetrahedron.png (2)
(3.6.6)
Truncated Alternated Cubic Honeycomb.svg Truncated alternated cubic tiling.png Truncated alternated cubic honeycomb verf.png
rectangular pyramid
J23
A16
W11
G5
h3δ4
O26
Runcic cubic (sratoh)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png (1)
cube
  Small rhombicuboctahedron.png (3)
(3.4.4.4)
Tetrahedron.png (1)
(3.3.3)
Runcinated alternated cubic honeycomb.jpg Runcinated alternated cubic tiling.png Runcinated alternated cubic honeycomb verf.png
tapered triangular prism
J24
A20
W16
G21
h2,3δ4
O28
Runcicantic cubic (gratoh)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated hexahedron.png (1)
(3.8.8)
  Great rhombicuboctahedron.png (2)
(4.6.8)
Truncated tetrahedron.png (1)
(3.6.6)
Cantitruncated alternated cubic honeycomb.png Cantitruncated alternated cubic tiling.png Runcitruncated alternate cubic honeycomb verf.png
Irregular tetrahedron
<[4,31,1]> uniform honeycombs, space group Pm3m (221)
Referenced
indices
Honeycomb name
Coxeter diagrams
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c3.png
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
(0,0')
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
(1)
CDel nodea.pngCDel 2.pngCDel nodeb.pngCDel 2.pngCDel nodea.png
(3)
CDel nodea.pngCDel 3a.pngCDel branch.png
Alt
J11,15
A1
W1
G22
δ4
O1
Cubic (chon)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Hexahedron.png (8)
(4.4.4)
    Bicolor cubic honeycomb.png Cubic tiling.png Cubic honeycomb verf.svg
octahedron
J12,32
A15
W14
G7
t1δ4
O15
Rectified cubic (rich)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png (4)
(3.4.3.4)
  Uniform polyhedron-33-t1.png (2)
(3.3.3.3)
  Rectified cubic honeycomb4.png Rectified cubic tiling.png Rectified alternate cubic honeycomb verf.png
cuboid
Rectified cubic (rich)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png (2)
(3.3.3.3)
  Uniform polyhedron-33-t02.png (4)
(3.4.3.4)
  Rectified cubic honeycomb3.png Cantellated alternate cubic honeycomb verf.png
cuboid
J13
A14
W15
G8
t0,1δ4
O14
Truncated cubic (tich)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png (4)
(3.8.8)
  Uniform polyhedron-33-t1.png (1)
(3.3.3.3)
  Truncated cubic honeycomb2.png Truncated cubic tiling.png Bicantellated alternate cubic honeycomb verf.png
square pyramid
J14
A17
W12
G9
t0,2δ4
O17
Cantellated cubic (srich)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png (2)
(3.4.4.4)
Uniform polyhedron 222-t012.png (2)
(4.4.4)
Uniform polyhedron-33-t02.png (1)
(3.4.3.4)
  Cantellated cubic honeycomb.jpg Cantellated cubic tiling.png Runcicantellated alternate cubic honeycomb verf.png
obilique triangular prism
J16
A3
W2
G28
t0,2δ4
O16
Bitruncated cubic (batch)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png (2)
(4.6.6)
  Uniform polyhedron-33-t012.png (2)
(4.6.6)
  Bitruncated cubic honeycomb3.png Bitruncated cubic tiling.png Cantitruncated alternate cubic honeycomb verf.png
isosceles tetrahedron
J17
A18
W13
G25
t0,1,2δ4
O18
Cantitruncated cubic (grich)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png (2)
(4.6.8)
Uniform polyhedron 222-t012.png (1)
(4.4.4)
Uniform polyhedron-33-t012.png (1)
(4.6.6)
  Cantitruncated Cubic Honeycomb.svg Cantitruncated cubic tiling.png Omnitruncated alternated cubic honeycomb verf.png
irregular tetrahedron
J21,31,51
A2
W9
G1
hδ4
O21
Alternated cubic (octet)
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png
Tetrahedron.png (8)
(3.3.3)
   Octahedron.png (6)
(3.3.3.3)
Tetrahedral-octahedral honeycomb2.png Alternated cubic tiling.png Alternated cubic honeycomb verf.svg
cuboctahedron
J22,34
A21
W17
G10
h2δ4
O25
Cantic cubic (tatoh)
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png
Truncated tetrahedron.png (2)
(3.6.6)
  Cuboctahedron.png (1)
(3.4.3.4)
Truncated octahedron.png (2)
(4.6.6)
Truncated Alternated Cubic Honeycomb.svg Truncated alternated cubic tiling.png Truncated alternated cubic honeycomb verf.png
rectangular pyramid
Nonuniforma Alternated bitruncated cubic (bisch)
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg (2)
(3.3.3.3.3)
  Uniform polyhedron-33-s012.svg (2)
(3.3.3.3.3)
Tetrahedron.png (4)
(3.3.3)
Alternated bitruncated cubic honeycomb verf.png
Nonuniformb Alternated cantitruncated cubic (serch)
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Snub hexahedron.png (2)
(3.3.3.3.4)
Tetrahedron.png (1)
(3.3.3)
Uniform polyhedron-43-h01.svg (1)
(3.3.3.3.3)
Tetrahedron.png (4)
(3.3.3)
Alternated cantitruncated cubic honeycomb.png Alternated cantitruncated cubic honeycomb verf.png
Irr. tridiminished icosahedron

Ã3, [3[4]] group

There are 5 forms [3] constructed from the , [3[4]] Coxeter group, of which only the quarter cubic honeycomb is unique. There is one index 2 subgroup [3[4]]+ which generates the snub form, which is not uniform, but included for completeness.

A3 honeycombs
Space
group
Fibrifold Square
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
F43m
(216)
1o:2a1 Scalene tetrahedron diagram.png [3[4]]CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png(None)
Fm3m
(225)
2:2d2 Sphenoid diagram.png <[3[4]]>
↔ [4,31,1]
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png
CDel node.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
×21
CDel node.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png  1 ,CDel node 1.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png  2
Fd3m
(227)
2+:2g2 Half-turn tetrahedron diagram.png [[3[4]]]
or [2+[3[4]]]
CDel branch 11.pngCDel 3ab.pngCDel branch.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
×22CDel branch 11.pngCDel 3ab.pngCDel branch.png  3
Pm3m
(221)
4:2d4 Digonal disphenoid diagram.png <2[3[4]]>
↔ [4,3,4]
CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
×41
CDel node.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png  4
I3
(204)
8−or8 Regular tetrahedron diagram.png [4[3[4]]]+
↔ [[4,3+,4]]
CDel branch c1.pngCDel 3ab.pngCDel branch c1.png
CDel branch c1.pngCDel 4a4b.pngCDel nodes.png
½×8
↔ ½×2
CDel branch hh.pngCDel 3ab.pngCDel branch hh.png  (*)
Im3m
(229)
8o:2[4[3[4]]]
↔ [[4,3,4]]
×8
×2
CDel branch 11.pngCDel 3ab.pngCDel branch 11.png  5
[[3[4]]] uniform honeycombs, space group Fd3m (227)
Referenced
indices
Honeycomb name
Coxeter diagrams
CDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.png
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
(0,1)
CDel nodeb.pngCDel 3b.pngCDel branch.png
(2,3)
CDel branch.pngCDel 3a.pngCDel nodea.png
J25,33
A13
W10
G6
qδ4
O27
quarter cubic (batatoh)
CDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
q{4,3,4}
Tetrahedron.png (2)
(3.3.3)
Truncated tetrahedron.png (6)
(3.6.6)
Quarter cubic honeycomb.png Bitruncated alternated cubic tiling.png T01 quarter cubic honeycomb verf.png
triangular antiprism
<[3[4]]> ↔ [4,31,1] uniform honeycombs, space group Fm3m (225)
Referenced
indices
Honeycomb name
Coxeter diagrams
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel node.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
0(1,3)2
J21,31,51
A2
W9
G1
hδ4
O21
alternated cubic (octet)
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
h{4,3,4}
Uniform polyhedron-33-t0.png (8)
(3.3.3)
Uniform polyhedron-33-t1.png (6)
(3.3.3.3)
Tetrahedral-octahedral honeycomb2.png Alternated cubic tiling.png Alternated cubic honeycomb verf.svg
cuboctahedron
J22,34
A21
W17
G10
h2δ4
O25
cantic cubic (tatoh)
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
h2{4,3,4}
Truncated tetrahedron.png (2)
(3.6.6)
Uniform polyhedron-33-t02.png (1)
(3.4.3.4)
Uniform polyhedron-33-t012.png (2)
(4.6.6)
Truncated Alternated Cubic Honeycomb2.png Truncated alternated cubic tiling.png T012 quarter cubic honeycomb verf.png
Rectangular pyramid
[2[3[4]]] ↔ [4,3,4] uniform honeycombs, space group Pm3m (221)
Referenced
indices
Honeycomb name
Coxeter diagrams
CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
(0,2)
CDel nodeb.pngCDel 3b.pngCDel branch.png
(1,3)
CDel branch.pngCDel 3b.pngCDel nodeb.png
J12,32
A15
W14
G7
t1δ4
O1
rectified cubic (rich)
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
r{4,3,4}
Uniform polyhedron-33-t02.png (2)
(3.4.3.4)
Uniform polyhedron-33-t1.png (1)
(3.3.3.3)
Rectified cubic honeycomb2.png Rectified cubic tiling.png T02 quarter cubic honeycomb verf.png
cuboid
[4[3[4]]] ↔ [[4,3,4]] uniform honeycombs, space group Im3m (229)
Referenced
indices
Honeycomb name
Coxeter diagrams
CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 4.pngCDel node h0.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node h0.png
Cells by location
(and count around each vertex)
Solids
(Partial)
Frames
(Perspective)
vertex figure
(0,1,2,3)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Alt
J16
A3
W2
G28
t1,2δ4
O16
bitruncated cubic (batch)
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
2t{4,3,4}
Uniform polyhedron-33-t012.png (4)
(4.6.6)
Bitruncated cubic honeycomb2.png Bitruncated cubic tiling.png T0123 quarter cubic honeycomb verf.png
isosceles tetrahedron
Nonuniforma Alternated cantitruncated cubic (bisch)
CDel node h.pngCDel split1.pngCDel nodes hh.pngCDel split2.pngCDel node h.pngCDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
h2t{4,3,4}
Uniform polyhedron-33-s012.png (4)
(3.3.3.3.3)
Uniform polyhedron-33-t0.png (4)
(3.3.3)
  Alternated bitruncated cubic honeycomb verf.png

Nonwythoffian forms (gyrated and elongated)

Three more uniform honeycombs are generated by breaking one or another of the above honeycombs where its faces form a continuous plane, then rotating alternate layers by 60 or 90 degrees (gyration) and/or inserting a layer of prisms (elongation).

The elongated and gyroelongated alternated cubic tilings have the same vertex figure, but are not alike. In the elongated form, each prism meets a tetrahedron at one triangular end and an octahedron at the other. In the gyroelongated form, prisms that meet tetrahedra at both ends alternate with prisms that meet octahedra at both ends.

The gyroelongated triangular prismatic tiling has the same vertex figure as one of the plain prismatic tilings; the two may be derived from the gyrated and plain triangular prismatic tilings, respectively, by inserting layers of cubes.

Referenced
indices
symbolHoneycomb namecell types (# at each vertex)Solids
(Partial)
Frames
(Perspective)
vertex figure
J52
A2'
G2
O22
h{4,3,4}:g gyrated alternated cubic (gytoh) tetrahedron (8)
octahedron (6)
Gyrated alternated cubic honeycomb.png Gyrated alternated cubic.png Gyrated alternated cubic honeycomb verf.png
triangular orthobicupola
J61
A?
G3
O24
h{4,3,4}:ge gyroelongated alternated cubic (gyetoh) triangular prism (6)
tetrahedron (4)
octahedron (3)
Gyroelongated alternated cubic honeycomb.png Gyroelongated alternated cubic tiling.png Gyroelongated alternated cubic honeycomb verf.png
J62
A?
G4
O23
h{4,3,4}:e elongated alternated cubic (etoh) triangular prism (6)
tetrahedron (4)
octahedron (3)
Elongated alternated cubic honeycomb.png Elongated alternated cubic tiling.png
J63
A?
G12
O12
{3,6}:g × {∞} gyrated triangular prismatic (gytoph) triangular prism (12) Gyrated triangular prismatic honeycomb.png Gyrated triangular prismatic tiling.png Gyrated triangular prismatic honeycomb verf.png
J64
A?
G15
O13
{3,6}:ge × {∞} gyroelongated triangular prismatic (gyetaph) triangular prism (6)
cube (4)
Gyroelongated triangular prismatic honeycomb.png Gyroelongated triangular prismatic tiling.png Gyroelongated alternated triangular prismatic honeycomb verf.png

Prismatic stacks

Eleven prismatic tilings are obtained by stacking the eleven uniform plane tilings, shown below, in parallel layers. (One of these honeycombs is the cubic, shown above.) The vertex figure of each is an irregular bipyramid whose faces are isosceles triangles.

The C̃2×Ĩ1(), [4,4,2,], prismatic group

There are only 3 unique honeycombs from the square tiling, but all 6 tiling truncations are listed below for completeness, and tiling images are shown by colors corresponding to each form.

Indices Coxeter-Dynkin
and Schläfli
symbols
Honeycomb namePlane
tiling
Solids
(Partial)
Tiling
J11,15
A1
G22
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
{4,4}×{∞}
Cubic
(Square prismatic) (chon)
(4.4.4.4) Partial cubic honeycomb.png Uniform tiling 44-t0.svg
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
r{4,4}×{∞}
Uniform tiling 44-t1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
rr{4,4}×{∞}
Uniform tiling 44-t02.png
J45
A6
G24
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
t{4,4}×{∞}
Truncated/Bitruncated square prismatic (tassiph) (4.8.8) Truncated square prismatic honeycomb.png Uniform tiling 44-t01.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
tr{4,4}×{∞}
Uniform tiling 44-t012.png
J44
A11
G14
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
sr{4,4}×{∞}
Snub square prismatic (sassiph) (3.3.4.3.4) Snub square prismatic honeycomb.png Uniform tiling 44-snub.png
NonuniformCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
ht0,1,2,3{4,4,2,∞}

The G̃21(), [6,3,2,] prismatic group

Indices Coxeter-Dynkin
and Schläfli
symbols
Honeycomb namePlane
tiling
Solids
(Partial)
Tiling
J41
A4
G11
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
{3,6} × {∞}
Triangular prismatic (tiph) (36) Triangular prismatic honeycomb.png Uniform tiling 63-t2.png
J42
A5
G26
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
{6,3} × {∞}
Hexagonal prismatic (hiph) (63) Hexagonal prismatic honeycomb.png Uniform tiling 63-t0.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
t{3,6} × {∞}
Truncated triangular prismatic honeycomb.png Uniform tiling 63-t12.png
J43
A8
G18
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
r{6,3} × {∞}
Trihexagonal prismatic (thiph) (3.6.3.6) Triangular-hexagonal prismatic honeycomb.png Uniform tiling 63-t1.png
J46
A7
G19
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
t{6,3} × {∞}
Truncated hexagonal prismatic (thaph) (3.12.12) Truncated hexagonal prismatic honeycomb.png Uniform tiling 63-t01.png
J47
A9
G16
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
rr{6,3} × {∞}
Rhombi-trihexagonal prismatic (srothaph) (3.4.6.4) Rhombitriangular-hexagonal prismatic honeycomb.png Uniform tiling 63-t02.png
J48
A12
G17
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
sr{6,3} × {∞}
Snub hexagonal prismatic (snathaph) (3.3.3.3.6) Snub triangular-hexagonal prismatic honeycomb.png Uniform tiling 63-snub.png
J49
A10
G23
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
tr{6,3} × {∞}
truncated trihexagonal prismatic (grothaph) (4.6.12) Omnitruncated triangular-hexagonal prismatic honeycomb.png Uniform tiling 63-t012.svg
J65
A11'
G13
CDel node.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
{3,6}:e × {∞}
elongated triangular prismatic (etoph) (3.3.3.4.4) Elongated triangular prismatic honeycomb.png Tile 33344.svg
J52
A2'
G2
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
h3t{3,6,2,∞}
gyrated tetrahedral-octahedral (gytoh) (36) Gyrated alternated cubic honeycomb.png Uniform tiling 63-t2.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
s2r{3,6,2,∞}
NonuniformCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
ht0,1,2,3{3,6,2,∞}

Enumeration of Wythoff forms

All nonprismatic Wythoff constructions by Coxeter groups are given below, along with their alternations. Uniform solutions are indexed with Branko Grünbaum's listing. Green backgrounds are shown on repeated honeycombs, with the relations are expressed in the extended symmetry diagrams.

Coxeter group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
[4,3,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[4,3,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png
6CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png7 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png8
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png9 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png25 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png20
[1+,4,3+,4,1+](2)CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngb
[2+[4,3,4]]
CDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.png = CDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png22[2+[(4,3+,4,2+)]](1)CDel branch.pngCDel 4a4b.pngCDel nodes hh.png6
[2+[4,3,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.png
1CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png28[2+[(4,3+,4,2+)]](1)CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pnga
[2+[4,3,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.png
2CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png27[2+[4,3,4]]+(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngc
[4,31,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,31,1]
CDel node c3.pngCDel 4.pngCDel node c4.pngCDel split1.pngCDel nodeab c1-2.png
4CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png7 | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png10 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png28
[1[4,31,1]]=[4,3,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png = CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7)CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png22 | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png7 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png22 | CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png7 | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png9 | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png28 | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png25[1[1+,4,31,1]]+(2)CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png6 | CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.pnga
[1[4,31,1]]+
=[4,3,4]+
(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.pngb
[3[4]]
CDel branch.pngCDel 3ab.pngCDel branch.png
[3[4]](none)
[2+[3[4]]]
CDel branch c1.pngCDel 3ab.pngCDel branch c2.png
1CDel branch 11.pngCDel 3ab.pngCDel branch.png6
[1[3[4]]]=[4,31,1]
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png = CDel node h0.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
(2)CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png10
[2[3[4]]]=[4,3,4]
CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png = CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(1)CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png7
[(2+,4)[3[4]]]=[2+[4,3,4]]
CDel branch c1.pngCDel 3ab.pngCDel branch c1.png = CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node h0.png
(1)CDel branch 11.pngCDel 3ab.pngCDel branch 11.png28[(2+,4)[3[4]]]+
= [2+[4,3,4]]+
(1)CDel branch hh.pngCDel 3ab.pngCDel branch hh.pnga

Examples

All 28 of these tessellations are found in crystal arrangements.[ citation needed ]

The alternated cubic honeycomb is of special importance since its vertices form a cubic close-packing of spheres. The space-filling truss of packed octahedra and tetrahedra was apparently first discovered by Alexander Graham Bell and independently re-discovered by Buckminster Fuller (who called it the octet truss and patented it in the 1940s). . Octet trusses are now among the most common types of truss used in construction.

Frieze forms

If cells are allowed to be uniform tilings, more uniform honeycombs can be defined:

Families:

Examples (partially drawn)
Cubic slab honeycomb
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Alternated hexagonal slab honeycomb
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Trihexagonal slab honeycomb
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
Cubic semicheck.png Tetroctahedric semicheck.png Trihexagonal prism slab honeycomb.png
X4o4o2ox vertex figure.png
(4) 43: cube
(1) 44: square tiling
O6x3o2x vertex figure.png
(4) 33: tetrahedron
(3) 34: octahedron
(1) 36: triangular tiling
O3o6s2s vertex figure.png
(2) 3.4.4: triangular prism
(2) 4.4.6: hexagonal prism
(1) (3.6)2: trihexagonal tiling

The first two forms shown above are semiregular (uniform with only regular facets), and were listed by Thorold Gosset in 1900 respectively as the 3-ic semi-check and tetroctahedric semi-check. [4]

Scaliform honeycomb

A scaliform honeycomb is vertex-transitive, like a uniform honeycomb, with regular polygon faces while cells and higher elements are only required to be orbiforms, equilateral, with their vertices lying on hyperspheres. For 3D honeycombs, this allows a subset of Johnson solids along with the uniform polyhedra. Some scaliforms can be generated by an alternation process, leaving, for example, pyramid and cupola gaps. [5]

Euclidean honeycomb scaliforms
Frieze slabsPrismatic stacks
s3{2,6,3}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngs3{2,4,4}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngs{2,4,4}, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png3s4{4,4,2,}, CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
Runcic snub 263 honeycomb.png Runcic snub 244 honeycomb.png Alternated cubic slab honeycomb.png Elongated square antiprismatic celluation.png
Triangular cupola.png Octahedron.png Uniform tiling 333-t01.png Square cupola.png Tetrahedron.png Uniform tiling 44-t01.png Square pyramid.png Tetrahedron.png Uniform tiling 44-t0.png Square pyramid.png Tetrahedron.png Hexahedron.png
S2s6o3x vertex figure.png
(1) 3.4.3.4: triangular cupola
(2) 3.4.6: triangular cupola
(1) 3.3.3.3: octahedron
(1) 3.6.3.6: trihexagonal tiling
S2s4o4x vertex figure.png
(1) 3.4.4.4: square cupola
(2) 3.4.8: square cupola
(1) 3.3.3: tetrahedron
(1) 4.8.8: truncated square tiling
O4o4s2s vertex figure.png
(1) 3.3.3.3: square pyramid
(4) 3.3.4: square pyramid
(4) 3.3.3: tetrahedron
(1) 4.4.4.4: square tiling
O4o4s2six vertex figure.png
(1) 3.3.3.3: square pyramid
(4) 3.3.4: square pyramid
(4) 3.3.3: tetrahedron
(4) 4.4.4: cube

Hyperbolic forms

The order-4 dodecahedral honeycomb, {5,3,4} in perspective Hyperbolic orthogonal dodecahedral honeycomb.png
The order-4 dodecahedral honeycomb, {5,3,4} in perspective
The paracompact hexagonal tiling honeycomb, {6,3,3}, in perspective Hyperbolic 3d hexagonal tiling.png
The paracompact hexagonal tiling honeycomb, {6,3,3}, in perspective

There are 9 Coxeter group families of compact uniform honeycombs in hyperbolic 3-space, generated as Wythoff constructions, and represented by ring permutations of the Coxeter-Dynkin diagrams for each family.

From these 9 families, there are a total of 76 unique honeycombs generated:

Several non-Wythoffian forms outside the list of 76 are known; it is not known how many there are.

Paracompact hyperbolic forms

There are also 23 paracompact Coxeter groups of rank 4. These families can produce uniform honeycombs with unbounded facets or vertex figure, including ideal vertices at infinity:

Simplectic hyperbolic paracompact group summary
TypeCoxeter groupsUnique honeycomb count
Linear graphsCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png4×15+6+8+8 = 82
Tridental graphsCDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png4+4+0 = 8
Cyclic graphsCDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png | CDel branch.pngCDel splitcross.pngCDel branch.png4×9+5+1+4+1+0 = 47
Loop-n-tail graphsCDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png4+4+4+2 = 14

Related Research Articles

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is oblique. A uniform triangular prism is a right triangular prism with equilateral bases, and square sides.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Quarter cubic honeycomb</span>

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Uniform 7-polytope</span>

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

<span class="mw-page-title-main">Uniform 6-polytope</span>

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

<span class="mw-page-title-main">Triangular prismatic honeycomb</span>

The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation in Euclidean 3-space. It is composed entirely of triangular prisms.

<span class="mw-page-title-main">Tesseractic honeycomb</span>

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.

The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Architectonic and catoptric tessellation</span> Uniform Euclidean 3D tessellations and their duals

In geometry, John Horton Conway defines architectonic and catoptric tessellations as the uniform tessellations of Euclidean 3-space with prime space groups and their duals, as three-dimensional analogue of the Platonic, Archimedean, and Catalan tiling of the plane. The singular vertex figure of an architectonic tessellation is the dual of the cell of catoptric tessellation. The cubille is the only Platonic (regular) tessellation of 3-space, and is self-dual. There are other uniform honeycombs constructed as gyrations or prismatic stacks which are excluded from these categories.

References

  1. 1 2 Sloane, N. J. A. (ed.). "SequenceA242941(Convex uniform tessellations in dimension n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. George Olshevsky, (2006, Uniform Panoploid Tetracombs, Manuscript (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  3. , A000029 6-1 cases, skipping one with zero marks
  4. Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics . 29: 43–48.
  5. "Polytope-tree".
Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]}δ10hδ10qδ10
E10Uniform 10-honeycomb{3[11]}δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21