Uniform honeycombs in hyperbolic space

Last updated
Unsolved problem in mathematics:
Find the complete set of hyperbolic uniform honeycombs.

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

Contents

Four compact regular hyperbolic honeycombs
H3 534 CC center.png
Order-4 dodecahedral honeycomb
{5,3,4}
H3 535 CC center.png
Order-5 dodecahedral honeycomb
{5,3,5}
H3 435 CC center.png
Order-5 cubic honeycomb
{4,3,5}
H3 353 CC center.png
Icosahedral honeycomb
{3,5,3}
Poincaré ball model projections

Hyperbolic uniform honeycomb families

Honeycombs are divided between compact and paracompact forms defined by Coxeter groups, the first category only including finite cells and vertex figures (finite subgroups), and the second includes affine subgroups.

Compact uniform honeycomb families

The nine compact Coxeter groups are listed here with their Coxeter diagrams, [1] in order of the relative volumes of their fundamental simplex domains. [2]

These 9 families generate a total of 76 unique uniform honeycombs. The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. Two known examples are cited with the {3,5,3} family below. Only two families are related as a mirror-removal halving: [5,31,1] ↔ [5,3,4,1+].

IndexedFundamental
simplex
volume [2]
Witt
symbol
Coxeter
notation
Commutator
subgroup
Coxeter
diagram
Honeycombs
H10.0358850633[5,3,4][(5,3)+,4,1+]
= [5,31,1]+
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png15 forms, 2 regular
H20.0390502856[3,5,3][3,5,3]+CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png9 forms, 1 regular
H30.0717701267[5,31,1][5,31,1]+CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png11 forms (7 overlap with [5,3,4] family, 4 are unique)
H40.0857701820[(4,3,3,3)][(4,3,3,3)]+CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png9 forms
H50.0933255395[5,3,5][5,3,5]+CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png9 forms, 1 regular
H60.2052887885[(5,3,3,3)][(5,3,3,3)]+CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png9 forms
H70.2222287320[(4,3)[2]][(4,3+,4,3+)]CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png6 forms
H80.3586534401[(3,4,3,5)][(3,4,3,5)]+CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png9 forms
H90.5021308905[(5,3)[2]][(5,3)[2]]+CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png6 forms

There are just two radical subgroups with non-simplicial domains that can be generated by removing a set of two or more mirrors separated by all other mirrors by even-order branches. One is [(4,3,4,3*)], represented by Coxeter diagrams CDel branch c1-2.pngCDel 4a4b.pngCDel branch.pngCDel labels.png an index 6 subgroup with a trigonal trapezohedron fundamental domainCDel node c1.pngCDel splitplit1u.pngCDel branch3u c2.pngCDel 3a3buc-cross.pngCDel branch3u c1.pngCDel splitplit2u.pngCDel node c2.png, which can be extended by restoring one mirror as CDel branchu c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel split2-44.pngCDel node.png. The other is [4,(3,5)*], index 120 with a dodecahedral fundamental domain.

Paracompact hyperbolic uniform honeycombs

There are also 23 paracompact Coxeter groups of rank 4 that produce paracompact uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity.

Hyperbolic paracompact group summary
TypeCoxeter groups
Linear graphsCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Tridental graphsCDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cyclic graphsCDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png | CDel branch.pngCDel splitcross.pngCDel branch.png
Loop-n-tail graphsCDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png

Other paracompact Coxeter groups exists as Vinberg polytope fundamental domains, including these triangular bipyramid fundamental domains (double tetrahedra) as rank 5 graphs including parallel mirrors. Uniform honeycombs exist as all permutations of rings in these graphs, with the constraint that at least one node must be ringed across infinite order branches.

DimensionRankGraphs
H35
CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, CDel node.pngCDel split1-43.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, CDel node.pngCDel split1-53.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, CDel node.pngCDel split1-63.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2-53.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-54.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-55.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-63.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-64.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-65.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-66.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-53.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-43.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png, CDel branchu.pngCDel split2-54.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-55.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-63.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-64.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-65.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-66.pngCDel node.pngCDel split1.pngCDel branchu.png

[3,5,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,5,3] or CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png

One related non-wythoffian form is constructed from the {3,5,3} vertex figure with 4 (tetrahedrally arranged) vertices removed, creating pentagonal antiprisms and dodecahedra filling in the gaps, called a tetrahedrally diminished dodecahedron. [3] Another is constructed with 2 antipodal vertices removed. [4]

The bitruncated and runcinated forms (5 and 6) contain the faces of two regular skew polyhedrons: {4,10|3} and {10,4|3}.

#Honeycomb name
Coxeter diagram
and Schläfli
symbols
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 5.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 5.pngCDel node n3.png
1 icosahedral (ikhon)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
t0{3,5,3}
   (12)
Icosahedron.png
(3.3.3.3.3)
Order-3 icosahedral honeycomb verf.svg H3 353 CC center.png
2 rectified icosahedral (rih)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
t1{3,5,3}
(2)
Dodecahedron.png
(5.5.5)
  (3)
Icosidodecahedron.png
(3.5.3.5)
Rectified icosahedral honeycomb verf.png H3 353 CC center 0100.png
3 truncated icosahedral (tih)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
t0,1{3,5,3}
(1)
Dodecahedron.png
(5.5.5)
  (3)
Truncated icosahedron.png
(5.6.6)
Truncated icosahedral honeycomb verf.png H3 353-0011 center ultrawide.png
4 cantellated icosahedral (srih)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{3,5,3}
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Triangular prism.png
(4.4.3)
 (2)
Small rhombicosidodecahedron.png
(3.5.4.5)
Cantellated icosahedral honeycomb verf.png H3 353-1010 center ultrawide.png
5 runcinated icosahedral (spiddih)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,5,3}
(1)
Icosahedron.png
(3.3.3.3.3)
(5)
Triangular prism.png
(4.4.3)
(5)
Triangular prism.png
(4.4.3)
(1)
Icosahedron.png
(3.3.3.3.3)
Runcinated icosahedral honeycomb verf.png H3 353-1001 center ultrawide.png
6 bitruncated icosahedral (dih)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{3,5,3}
(2)
Truncated dodecahedron.png
(3.10.10)
  (2)
Truncated dodecahedron.png
(3.10.10)
Bitruncated icosahedral honeycomb verf.png H3 353-0110 center ultrawide.png
7 cantitruncated icosahedral (grih)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{3,5,3}
(1)
Truncated dodecahedron.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
 (2)
Great rhombicosidodecahedron.png
(4.6.10)
Cantitruncated icosahedral honeycomb verf.png H3 353-1110 center ultrawide.png
8 runcitruncated icosahedral (prih)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,5,3}
(1)
Small rhombicosidodecahedron.png
(3.5.4.5)
(1)
Triangular prism.png
(4.4.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Truncated icosahedron.png
(5.6.6)
Runcitruncated icosahedral honeycomb verf.png H3 353-1101 center ultrawide.png
9 omnitruncated icosahedral (gipiddih)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,5,3}
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
Omnitruncated icosahedral honeycomb verf.png H3 353-1111 center ultrawide.png
#Honeycomb name
Coxeter diagram
and Schläfli
symbols
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 5.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 5.pngCDel node n3.png
Alt
[77] partially diminished icosahedral (pidih)
pd{3,5,3} [5]
(12)
Pentagonal antiprism.png
(3.3.3.5)
(4)
Dodecahedron.png
(5.5.5)
Partial truncation order-3 icosahedral honeycomb verf.png H3 353-pd center ultrawide.png
[78]semi-partially diminished icosahedral
spd{3,5,3} [4]
(6)
Pentagonal antiprism.png
(3.3.3.5)
(6)
Icosahedron.png
(3.3.3.3.3)
(2)
Dodecahedron.png
(5.5.5)
Nonuniform omnisnub icosahedral (snih)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,5,3}
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
Octahedron.png
(3.3.3.3
(1)
Octahedron.png
(3.3.3.3)
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub icosahedral honeycomb verf.png

[5,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [5,3,4] or CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png.

This family is related to the group [5,31,1] by a half symmetry [5,3,4,1+], or CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png, when the last mirror after the order-4 branch is inactive, or as an alternation if the third mirror is inactive CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel nodes 10lu.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png.

#Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 5.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 5.pngCDel node n2.pngCDel 3.pngCDel node n3.png
10 order-4 dodecahedral (doehon)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
---(8)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron.png
(5.5.5)
Order-4 dodecahedral honeycomb verf.png H3 534 CC center.png
11 rectified order-4 dodecahedral (riddoh)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes.png
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
--(4)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
(3.5.3.5)
Rectified order-4 dodecahedral honeycomb verf.png H3 534 CC center 0100.png
12 rectified order-5 cubic (ripech)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png
(5)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
--(2)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Icosahedron.png
(3.3.3.3.3)
Rectified order-5 cubic honeycomb verf.png H3 435 CC center 0100.png
13 order-5 cubic (pechon)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(20)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
--- Order-5 cubic honeycomb verf.svg H3 435 CC center.png
14 truncated order-4 dodecahedral (tiddoh)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes.png
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
--(4)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated dodecahedron.png
(3.10.10)
Truncated order-4 dodecahedral honeycomb verf.png H3 435-0011 center ultrawide.png
15 bitruncated order-5 cubic (ciddoh)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
--(2)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated icosahedron.png
(5.6.6)
Bitruncated order-5 cubic honeycomb verf.png H3 534-0110 center ultrawide.png
16 truncated order-5 cubic (tipech)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(5)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
--(1)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Icosahedron.png
(3.3.3.3.3)
Truncated order-5 cubic honeycomb verf.png H3 534-0011 center ultrawide.png
17 cantellated order-4 dodecahedral (sriddoh)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
-(2)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Small rhombicosidodecahedron.png
(3.4.5.4)
Cantellated order-4 dodecahedral honeycomb verf.png H3 534-1010 center ultrawide.png
18 cantellated order-5 cubic (sripech)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
-(2)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Pentagonal prism.png
(4.4.5)
(1)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
(3.5.3.5)
Cantellated order-5 cubic honeycomb verf.png H3 534-0101 center ultrawide.png
19 runcinated order-5 cubic (sidpicdoh)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(3)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png
Pentagonal prism.png
(4.4.5)
(1)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron.png
(5.5.5)
Runcinated order-5 cubic honeycomb verf.png H3 534-1001 center ultrawide.png
20 cantitruncated order-4 dodecahedral (griddoh)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
-(2)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Great rhombicosidodecahedron.png
(4.6.10)
Cantitruncated order-4 dodecahedral honeycomb verf.png H3 534-1110 center ultrawide.png
21 cantitruncated order-5 cubic (gripech)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
-(1)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Pentagonal prism.png
(4.4.5)
(1)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Truncated icosahedron.png
(5.6.6)
Cantitruncated order-5 cubic honeycomb verf.png H3 534-0111 center ultrawide.png
22 runcitruncated order-4 dodecahedral (pripech)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(2)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Decagonal prism.png
(4.4.10)
(1)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated dodecahedron.png
(3.10.10)
Runcitruncated order-4 dodecahedral honeycomb verf.png H3 534-1101 center ultrawide.png
23 runcitruncated order-5 cubic (priddoh)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png
Pentagonal prism.png
(4.4.5)
(1)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Small rhombicosidodecahedron.png
(3.4.5.4)
Runcitruncated order-5 cubic honeycomb verf.png H3 534-1011 center ultrawide.png
24 omnitruncated order-5 cubic (gidpicdoh)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Decagonal prism.png
(4.4.10)
(1)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Great rhombicosidodecahedron.png
(4.6.10)
Omnitruncated order-4 dodecahedral honeycomb verf.png H3 534-1111 center ultrawide.png
#Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 5.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 5.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[34] alternated order-5 cubic (apech)
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
(20)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Tetrahedron.png
(3.3.3)
  (12)
Icosahedron.png
(3.3.3.3.3)
Alternated order-5 cubic honeycomb verf.png Alternated order 5 cubic honeycomb.png
[35] cantic order-5 cubic (tapech)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
(1)
Icosidodecahedron.png
(3.5.3.5)
-(2)
Truncated icosahedron.png
(5.6.6)
(2)
Truncated tetrahedron.png
(3.6.6)
Truncated alternated order-5 cubic honeycomb verf.png H3 5311-0110 center ultrawide.png
[36] runcic order-5 cubic (birapech)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
(1)
Dodecahedron.png
(5.5.5)
-(3)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Tetrahedron.png
(3.3.3)
Runcinated alternated order-5 cubic honeycomb verf.png H3 5311-1010 center ultrawide.png
[37] runcicantic order-5 cubic (bitapech)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
(1)
Truncated dodecahedron.png
(3.10.10)
-(2)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Truncated tetrahedron.png
(3.6.6)
Runcitruncated alternated order-5 cubic honeycomb verf.png H3 5311-1110 center ultrawide.png
Nonuniform snub rectified order-4 dodecahedral
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
(1)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
(1)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
-(2)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Alternated cantitruncated order-4 dodecahedral honeycomb verf.png
Irr. tridiminished icosahedron
Nonuniform runcic snub rectified order-4 dodecahedral
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node 1.png
Cube rotorotational symmetry.png
(4.4.4.4)
-CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub dodecahedron cw.png
(3.3.3.3.5)
Tetrahedron.png
+(3.3.3)
Nonuniform omnisnub order-5 cubic
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
(1)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Snub hexahedron.png
(3.3.3.3.4)
(1)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
(3.3.3.4)
(1)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
(1)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub order-4 dodecahedral honeycomb verf.png

[5,3,5] family

There are 9 forms, generated by ring permutations of the Coxeter group: [5,3,5] or CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

The bitruncated and runcinated forms (29 and 30) contain the faces of two regular skew polyhedrons: {4,6|5} and {6,4|5}.

#Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
1
CDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
2
CDel node.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node.png
3
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
25(Regular) Order-5 dodecahedral (pedhon)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t0{5,3,5}
   (20)
Dodecahedron.png
(5.5.5)
Order-5 dodecahedral honeycomb verf.png H3 535 CC center.png
26 rectified order-5 dodecahedral (ripped)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t1{5,3,5}
(2)
Icosahedron.png
(3.3.3.3.3)
  (5)
Icosidodecahedron.png
(3.5.3.5)
Rectified order-5 dodecahedral honeycomb verf.png H3 535 CC center 0100.png
27 truncated order-5 dodecahedral (tipped)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t0,1{5,3,5}
(1)
Icosahedron.png
(3.3.3.3.3)
  (5)
Truncated dodecahedron.png
(3.10.10)
Truncated order-5 dodecahedral honeycomb verf.png H3 535-0011 center ultrawide.png
28 cantellated order-5 dodecahedral (sripped)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,2{5,3,5}
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Pentagonal prism.png
(4.4.5)
 (2)
Small rhombicosidodecahedron.png
(3.5.4.5)
Cantellated order-5 dodecahedral honeycomb verf.png H3 535-1010 center ultrawide.png
29 Runcinated order-5 dodecahedral (spidded)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{5,3,5}
(1)
Dodecahedron.png
(5.5.5)
(3)
Pentagonal prism.png
(4.4.5)
(3)
Pentagonal prism.png
(4.4.5)
(1)
Dodecahedron.png
(5.5.5)
Runcinated order-5 dodecahedral honeycomb verf.png H3 535-1001 center ultrawide.png
30 bitruncated order-5 dodecahedral (diddoh)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1,2{5,3,5}
(2)
Truncated icosahedron.png
(5.6.6)
  (2)
Truncated icosahedron.png
(5.6.6)
Bitruncated order-5 dodecahedral honeycomb verf.png H3 535-0110 center ultrawide.png
31 cantitruncated order-5 dodecahedral (gripped)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,2{5,3,5}
(1)
Truncated icosahedron.png
(5.6.6)
(1)
Pentagonal prism.png
(4.4.5)
 (2)
Great rhombicosidodecahedron.png
(4.6.10)
Cantitruncated order-5 dodecahedral honeycomb verf.png H3 535-1110 center ultrawide.png
32 runcitruncated order-5 dodecahedral (pripped)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,3{5,3,5}
(1)
Small rhombicosidodecahedron.png
(3.5.4.5)
(1)
Pentagonal prism.png
(4.4.5)
(2)
Decagonal prism.png
(4.4.10)
(1)
Truncated dodecahedron.png
(3.10.10)
Runcitruncated order-5 dodecahedral honeycomb verf.png H3 535-1101 center ultrawide.png
33 omnitruncated order-5 dodecahedral (gipidded)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2,3{5,3,5}
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Decagonal prism.png
(4.4.10)
(1)
Decagonal prism.png
(4.4.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
Omnitruncated order-5 dodecahedral honeycomb verf.png H3 535-1111 center ultrawide.png
#Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
1
CDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
2
CDel node.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node.png
3
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Alt
Nonuniform omnisnub order-5 dodecahedral
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
ht0,1,2,3{5,3,5}
(1)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
(1)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
(1)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub order-5 dodecahedral honeycomb verf.png

[5,31,1] family

There are 11 forms (and only 4 not shared with [5,3,4] family), generated by ring permutations of the Coxeter group: [5,31,1] or CDel nodes.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png. If the branch ring states match, an extended symmetry can double into the [5,3,4] family, CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 5.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 5.pngCDel node c3.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
34 alternated order-5 cubic (apech)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
--(12)
Icosahedron.png
(3.3.3.3.3)
(20)
Tetrahedron.png
(3.3.3)
Alternated order-5 cubic honeycomb verf.png Alternated order 5 cubic honeycomb.png
35 cantic order-5 cubic (tapech)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Icosidodecahedron.png
(3.5.3.5)
-(2)
Truncated icosahedron.png
(5.6.6)
(2)
Truncated tetrahedron.png
(3.6.6)
Truncated alternated order-5 cubic honeycomb verf.png H3 5311-0110 center ultrawide.png
36 runcic order-5 cubic (birapech)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Dodecahedron.png
(5.5.5)
-(3)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Tetrahedron.png
(3.3.3)
Runcinated alternated order-5 cubic honeycomb verf.png H3 5311-1010 center ultrawide.png
37 runcicantic order-5 cubic (bitapech)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Truncated dodecahedron.png
(3.10.10)
-(2)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Truncated tetrahedron.png
(3.6.6)
Runcitruncated alternated order-5 cubic honeycomb verf.png H3 5311-1110 center ultrawide.png
#Honeycomb name
Coxeter diagram
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel 5.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 5.pngCDel node c3.png
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
3
CDel nodes.pngCDel split2.pngCDel node.png
Alt
[10] Order-4 dodecahedral (doehon)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(4)
Dodecahedron.png
(5.5.5)
-- Order-4 dodecahedral honeycomb verf.png H3 534 CC center.png
[11] rectified order-4 dodecahedral (riddoh)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(2)
Icosidodecahedron.png
(3.5.3.5)
-(2)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
Rectified alternated order-5 cubic honeycomb verf.png H3 534 CC center 0100.png
[12] rectified order-5 cubic (ripech)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
(1)
Icosahedron.png
(3.3.3.3.3)
-(5)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Cantellated alternated order-5 cubic honeycomb verf.png H3 435 CC center 0100.png
[15] bitruncated order-5 cubic (ciddoh)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Truncated icosahedron.png
(5.6.6)
-(2)
Uniform polyhedron-33-t012.png
(4.6.6)
Cantitruncated alternated order-5 cubic honeycomb verf.png H3 534-0110 center ultrawide.png
[14] truncated order-4 dodecahedral (tiddoh)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(2)
Truncated dodecahedron.png
(3.10.10)
-(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
Bicantellated alternated order-5 cubic honeycomb verf.png H3 435-0011 center ultrawide.png
[17] cantellated order-4 dodecahedral (sriddoh)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Small rhombicosidodecahedron.png
(3.4.5.4)
(2)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Runcicantellated alternated order-5 cubic honeycomb verf.png H3 534-1010 center ultrawide.png
[20] cantitruncated order-4 dodecahedral (griddoh)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
Omnitruncated alternated order-5 cubic honeycomb verf.png H3 534-1110 center ultrawide.png
Nonuniform snub rectified order-4 dodecahedral
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
(2)
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(2)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(4)
Uniform polyhedron-33-t2.png
+(3.3.3)
Alternated cantitruncated order-4 dodecahedral honeycomb verf.png
Irr. tridiminished icosahedron

[(4,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png

The bitruncated and runcinated forms (41 and 42) contain the faces of two regular skew polyhedrons: {8,6|3} and {6,8|3}.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label4.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label4.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
38 tetrahedral-cubic (gadtatdic)
CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png
{(3,3,3,4)}
(4)
Tetrahedron.png
(3.3.3)
-(4)
Hexahedron.png
(4.4.4)
(6)
Cuboctahedron.png
(3.4.3.4)
Uniform t0 4333 honeycomb verf.png H3 4333-1000 center ultrawide.png
39 tetrahedral-octahedral (gacocaddit)
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png
{(3,3,4,3)}
(12)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(8)
Tetrahedron.png
(3.3.3)
-(8)
Octahedron.png
(3.3.3.3)
Uniform t2 4333 honeycomb verf.png H3 4333-0100 center ultrawide.png
40 cyclotruncated tetrahedral-cubic (cytitch)
CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png
ct{(3,3,3,4)}
(3)
Truncated tetrahedron.png
(3.6.6)
(1)
Tetrahedron.png
(3.3.3)
(1)
Hexahedron.png
(4.4.4)
(3)
Truncated octahedron.png
(4.6.6)
Uniform t12 4333 honeycomb verf.png H3 4333-0110 center ultrawide.png
41 cyclotruncated cube-tetrahedron (cyticth)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
ct{(4,3,3,3)}
(1)
Tetrahedron.png
(3.3.3)
(1)
Tetrahedron.png
(3.3.3)
(3)
Truncated hexahedron.png
(3.8.8)
(3)
Truncated hexahedron.png
(3.8.8)
Uniform t01 4333 honeycomb verf.png H3 4333-1100 center ultrawide.png
42 cyclotruncated octahedral-tetrahedral (cytoth)
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
ct{(3,3,4,3)}
(4)
Truncated tetrahedron.png
(3.6.6)
(4)
Truncated tetrahedron.png
(3.6.6)
(1)
Octahedron.png
(3.3.3.3)
(1)
Octahedron.png
(3.3.3.3)
Uniform t23 4333 honeycomb verf.png H3 4333-0011 center ultrawide.png
43 rectified tetrahedral-cubic (ritch)
CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png
r{(3,3,3,4)}
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Cuboctahedron.png
(3.4.3.4)
(2)
Small rhombicuboctahedron.png
(3.4.4.4)
Uniform t02 4333 honeycomb verf.png H3 4333-1010 center ultrawide.png
44 truncated tetrahedral-cubic (titch)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png
t{(3,3,3,4)}
(1)
Truncated tetrahedron.png
(3.6.6)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Truncated hexahedron.png
(3.8.8)
(2)
Great rhombicuboctahedron.png
(4.6.8)
Uniform t012 4333 honeycomb verf.png H3 4333-1110 center ultrawide.png
45 truncated tetrahedral-octahedral (titdoh)
CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
t{(3,3,4,3)}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Truncated tetrahedron.png
(3.6.6)
(1)
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
Truncated octahedron.png
(4.6.6)
Uniform t123 4333 honeycomb verf.png H3 4333-0111 center ultrawide.png
46 omnitruncated tetrahedral-cubic (otitch)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png
tr{(3,3,3,4)}
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Great rhombicuboctahedron.png
(4.6.8)
(1)
Great rhombicuboctahedron.png
(4.6.8)
Uniform t0123 4333 honeycomb verf.png H3 4333-1111 center ultrawide.png
Nonuniform omnisnub tetrahedral-cubic
CDel label4.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
sr{(3,3,3,4)}
(1)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(1)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(1)
Snub hexahedron.png
(3.3.3.3.4)
(1)
Snub hexahedron.png
(3.3.3.3.4)
(4)
Tetrahedron.png
+(3.3.3)
Snub 4333 honeycomb verf.png

[(5,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png

The bitruncated and runcinated forms (50 and 51) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label5.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label5.pngCDel branch.pngCDel 3a.pngCDel nodea.png
47 tetrahedral-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png
(4)
Tetrahedron.png
(3.3.3)
-(4)
Dodecahedron.png
(5.5.5)
(6)
Icosidodecahedron.png
(3.5.3.5)
Uniform t0 5333 honeycomb verf.png H3 5333-1000 center ultrawide.png
48 tetrahedral-icosahedral
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png
(30)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(20)
Tetrahedron.png
(3.3.3)
-(12)
Icosahedron.png
(3.3.3.3.3)
Uniform t2 5333 honeycomb verf.png H3 5333-0010 center ultrawide.png
49 cyclotruncated tetrahedral-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png
(3)
Truncated tetrahedron.png
(3.6.6)
(1)
Tetrahedron.png
(3.3.3)
(1)
Dodecahedron.png
(5.5.5)
(3)
Truncated icosahedron.png
(5.6.6)
Uniform t12 5333 honeycomb verf.png H3 5333-0110 center ultrawide.png
52 rectified tetrahedral-dodecahedral
CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
Uniform t02 5333 honeycomb verf.png H3 5333-1010 center ultrawide.png
53 truncated tetrahedral-dodecahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png
(1)
Truncated tetrahedron.png
(3.6.6)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Truncated dodecahedron.png
(3.10.10)
(2)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t012 5333 honeycomb verf.png H3 5333-1110 center ultrawide.png
54 truncated tetrahedral-icosahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Truncated tetrahedron.png
(3.6.6)
(1)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Truncated icosahedron.png
(5.6.6)
Uniform t123 5333 honeycomb verf.png H3 5333-0111 center ultrawide.png
#Honeycomb name
Coxeter diagram
CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
CDel nodea.pngCDel 3a.pngCDel branch.png
2,3
CDel label5.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
Alt
50 cyclotruncated dodecahedral-tetrahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
(2)
Tetrahedron.png
(3.3.3)
(6)
Truncated dodecahedron.png
(3.10.10)
Uniform t01 5333 honeycomb verf.png H3 5333-1100 center ultrawide.png
51 cyclotruncated tetrahedral-icosahedral
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
(10)
Truncated tetrahedron.png
(3.6.6)
(2)
Icosahedron.png
(3.3.3.3.3)
Uniform t23 5333 honeycomb verf.png H3 5333-0011 center ultrawide.png
55 omnitruncated tetrahedral-dodecahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(2)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t0123 5333 honeycomb verf.png H3 5333-1111 center ultrawide.png
Nonuniform omnisnub tetrahedral-dodecahedral
CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
(2)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(2)
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub 5333 honeycomb verf.png

[(4,3,4,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png. There are 4 extended symmetries possible based on the symmetry of the rings: CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label4.png, CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png, CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label4.png, and CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label4.png.

This symmetry family is also related to a radical subgroup, index 6, CDel branch c1-2.pngCDel 4a4b.pngCDel branch.pngCDel labels.pngCDel node c1.pngCDel splitplit1u.pngCDel branch3u c2.pngCDel 3a3buc-cross.pngCDel branch3u c1.pngCDel splitplit2u.pngCDel node c2.png, constructed by [(4,3,4,3*)], and represents a trigonal trapezohedron fundamental domain.

The truncated forms (57 and 58) contain the faces of two regular skew polyhedrons: {6,6|4} and {8,8|3}.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Pictures
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label4.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label4.pngCDel branch.pngCDel 3a.pngCDel nodea.png
56 cubic-octahedral (cohon)
CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(6)
Octahedron.png
(3.3.3.3)
-(8)
Hexahedron.png
(4.4.4)
(12)
Cuboctahedron.png
(3.4.3.4)
Uniform t0 4343 honeycomb verf.png H3 4343-1000 center ultrawide.png
60 truncated cubic-octahedral (tucoh)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Truncated octahedron.png
(4.6.6)
(1)
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
Truncated hexahedron.png
(3.8.8)
(2)
Great rhombicuboctahedron.png
(4.6.8)
Uniform t012 4343 honeycomb verf.png H3 4343-1110 center ultrawide.png
#Honeycomb name
Coxeter diagram
CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,3
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1,2
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
Alt
57 cyclotruncated octahedral-cubic (cytoch)
CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(6)
Truncated octahedron.png
(4.6.6)
(2)
Hexahedron.png
(4.4.4)
Uniform t12 4343 honeycomb verf.png H3 4343-0110 center ultrawide.png
Nonuniform cyclosnub octahedral-cubic
CDel label4.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
(4)
Uniform polyhedron-43-h01.png
(3.3.3.3.3)
(2)
Tetrahedron.png
(3.3.3)
(4)
Octahedron.png
+(3.3.3.3)
Cyclosnub cubic-octahedral honeycomb vertex figure.png
#Honeycomb name
Coxeter diagram
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
2,3
CDel label4.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
58 cyclotruncated cubic-octahedral (cytacoh)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(2)
Octahedron.png
(3.3.3.3)
(6)
Truncated hexahedron.png
(3.8.8)
Uniform t01 4343 honeycomb verf.png H3 4343-1100 center ultrawide.png
#Honeycomb name
Coxeter diagram
CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,2
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1,3
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
59 rectified cubic-octahedral (racoh)
CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(2)
Cuboctahedron.png
(3.4.3.4)
(4)
Small rhombicuboctahedron.png
(3.4.4.4)
Uniform t02 4343 honeycomb verf.png H3 4343-1010 center ultrawide.png
#Honeycomb name
Coxeter diagram
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1,2,3
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
Alt
61 omnitruncated cubic-octahedral (otacoh)
CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(4)
Great rhombicuboctahedron.png
(4.6.8)
Uniform t0123 4343 honeycomb verf.png H3 4343-1111 center ultrawide.png
Nonuniform omnisnub cubic-octahedral
CDel label4.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
(4)
Snub hexahedron.png
(3.3.3.3.4)
(4)
Tetrahedron.png
+(3.3.3)
Snub 4343 honeycomb verf.png

[(4,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png

The truncated forms (65 and 66) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label5.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label5.pngCDel branch.pngCDel 3a.pngCDel nodea.png
62 octahedral-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(6)
Octahedron.png
(3.3.3.3)
-(8)
Dodecahedron.png
(5.5.5)
(1)
Icosidodecahedron.png
(3.5.3.5)
Uniform t0 5343 honeycomb verf.png H3 4353-0010 center ultrawide.png
63 cubic-icosahedral
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(30)
Cuboctahedron.png
(3.4.3.4)
(20)
Hexahedron.png
(4.4.4)
-(12)
Icosahedron.png
(3.3.3.3.3)
Uniform t2 5343 honeycomb verf.png H3 4353-1000 center ultrawide.png
64 cyclotruncated octahedral-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(3)
Truncated octahedron.png
(4.6.6)
(1)
Hexahedron.png
(4.4.4)
(1)
Dodecahedron.png
(5.5.5)
(3)
Truncated icosahedron.png
(5.6.6)
Uniform t12 5343 honeycomb verf.png H3 4353-0110 center ultrawide.png
67 rectified octahedral-dodecahedral
CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Cuboctahedron.png
(3.4.3.4)
(2)
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
Uniform t02 5343 honeycomb verf.png H3 4353-0101 center ultrawide.png
68 truncated octahedral-dodecahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Truncated octahedron.png
(4.6.6)
(1)
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
Truncated dodecahedron.png
(3.10.10)
(2)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t012 5343 honeycomb verf.png H3 4353-1110 center ultrawide.png
69 truncated cubic-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(2)
Great rhombicuboctahedron.png
(4.6.8)
(1)
Truncated hexahedron.png
(3.8.8)
(1)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Truncated icosahedron.png
(5.6.6)
Uniform t123 5343 honeycomb verf.png H3 4353-0111 center ultrawide.png
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
2,3
CDel label5.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
Alt
65 cyclotruncated dodecahedral-octahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(2)
Octahedron.png
(3.3.3.3)
(8)
Truncated dodecahedron.png
(3.10.10)
Uniform t01 5343 honeycomb verf.png H3 4353-1100 center ultrawide.png
66 cyclotruncated cubic-icosahedral
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(10)
Truncated hexahedron.png
(3.8.8)
(2)
Icosahedron.png
(3.3.3.3.3)
Uniform t23 5343 honeycomb verf.png H3 4353-0011 center ultrawide.png
70 omnitruncated octahedral-dodecahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(2)
Great rhombicuboctahedron.png
(4.6.8)
(2)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t0123 5343 honeycomb verf.png H3 4353-1111 center ultrawide.png
Nonuniform omnisnub octahedral-dodecahedral
CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
(2)
Snub hexahedron.png
(3.3.3.3.4)
(2)
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub 5343 honeycomb verf.png

[(5,3,5,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png. There are 4 extended symmetries possible based on the symmetry of the rings: CDel label5.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label5.png, CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png, CDel label5.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label5.png, and CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label5.png.

The truncated forms (72 and 73) contain the faces of two regular skew polyhedrons: {6,6|5} and {10,10|3}.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label5.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label5.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
71 dodecahedral-icosahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(12)
Icosahedron.png
(3.3.3.3.3)
-(20)
Dodecahedron.png
(5.5.5)
(30)
Icosidodecahedron.png
(3.5.3.5)
Uniform t0 5353 honeycomb verf.png H3 5353-1000 center ultrawide.png
72 cyclotruncated icosahedral-dodecahedral
CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(3)
Truncated icosahedron.png
(5.6.6)
(1)
Dodecahedron.png
(5.5.5)
(1)
Dodecahedron.png
(5.5.5)
(3)
Truncated icosahedron.png
(5.6.6)
Uniform t12 5353 honeycomb verf.png H3 5353-0110 center ultrawide.png
73 cyclotruncated dodecahedral-icosahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(1)
Icosahedron.png
(3.3.3.3.3)
(1)
Icosahedron.png
(3.3.3.3.3)
(3)
Truncated dodecahedron.png
(3.10.10)
(3)
Truncated dodecahedron.png
(3.10.10)
Uniform t01 5353 honeycomb verf.png H3 5353-1100 center ultrawide.png
74 rectified dodecahedral-icosahedral
CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
Uniform t02 5353 honeycomb verf.png H3 5353-1010 center ultrawide.png
75 truncated dodecahedral-icosahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Truncated icosahedron.png
(5.6.6)
(1)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Truncated dodecahedron.png
(3.10.10)
(2)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t012 5353 honeycomb verf.png H3 5353-1101 center ultrawide.png
76 omnitruncated dodecahedral-icosahedral
CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
Uniform t0123 5353 honeycomb verf.png H3 5353-1111 center ultrawide.png
Nonuniform omnisnub dodecahedral-icosahedral
CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
Tetrahedron.png
+(3.3.3)
Snub 5353 honeycomb verf.png

Other non-Wythoffians

There are infinitely many known non-Wythoffian uniform compact hyperbolic honeycombs, and there may be more undiscovered ones. Two have been listed above as diminishings of the icosahedral honeycomb {3,5,3}. [6]

In 1997 Wendy Krieger discovered an infinite series of uniform hyperbolic honeycombs with pseudoicosahedral vertex figures, made from 8 cubes and 12 p-gonal prisms at a vertex for any integer p. In the case p = 4, all cells are cubes and the result is the order-5 cubic honeycomb. The case p = 2 degenerates to the Euclidean cubic honeycomb. [6]

Another four known ones are related to noncompact families. The tessellation CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png consists of truncated cubes CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png and infinite order-8 triangular tilings CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png. However the latter intersect the sphere at infinity orthogonally, having exactly the same curvature as the hyperbolic space, and can be replaced by mirror images of the remainder of the tessellation, resulting in a compact uniform honeycomb consisting only of the truncated cubes. (So they are analogous to the hemi-faces of spherical hemipolyhedra.) [6] [7] Something similar can be done with the tessellation CDel nodes 11.pngCDel split2-43.pngCDel node.pngCDel 8.pngCDel node.png consisting of small rhombicuboctahedra CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, infinite order-8 triangular tilings CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png, and infinite order-8 square tilings CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png. The order-8 square tilings already intersect the sphere at infinity orthogonally, and if the order-8 triangular tilings are augmented with a set of triangular prisms, the surface passing through their centre points also intersects the sphere at infinity orthogonally. After replacing with mirror images, the result is a compact honeycomb containing the small rhombicuboctahedra and the triangular prisms. [8] Two more such constructions were discovered in 2023. The first one arises from the fact that CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png and CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png have the same circumradius; the former has truncated octahedra CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png and order-6 square tilings CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png, while the latter has cuboctahedra CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png and order-6 square tilings CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png. A compact uniform honeycomb is taken by discarding the order-6 square tilings they have in common, using only the truncated octahedra and cuboctahedra. The second one arises from a similar construction involving CDel nodes 11.pngCDel split2-53.pngCDel node.pngCDel 4.pngCDel node.png (which has small rhombicosidodecahedra CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png, octahedra CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, and order-4 pentagonal tilings CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png) and CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png (which is the prism of the order-4 pentagonal tiling, having pentagonal prisms CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png and order-4 pentagonal tilings CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png). These two likewise have the same circumradius, and a compact uniform honeycomb is taken by using only the finite cells of both, discarding the order-4 pentagonal tilings they have in common. [9]

Another non-Wythoffian was discovered in 2021. It has as vertex figure a snub cube with 8 vertices removed and contains two octahedra and eight snub cubes at each vertex. [6] Subsequently Krieger found a non-Wythoffian with a snub cube as the vertex figure, containing 32 tetrahedra and 6 octahedra at each vertex, and that the truncated and rectified versions of this honeycomb are still uniform. In 2022, Richard Klitzing generalised this construction to use any snub CDel node h.pngCDel 3.pngCDel node h.pngCDel p.pngCDel node h.png as vertex figure: the result is compact for p=4 or 5 (with a snub cube or snub dodecahedral vertex figure respectively), paracompact for p=6 (with a snub trihexagonal tiling as the vertex figure), and hypercompact for p>6. Again, the truncated and rectified versions of these honeycombs are still uniform. [6]

There are also other forms based on parallelepiped domains. Two known forms generalise the cubic-octahedral honeycomb, having distorted small rhombicuboctahedral vertex figures. One form has small rhombicuboctahedra, cuboctahedra, and cubes; another has small rhombicosidodecahedra, icosidodecahedra, and cubes. (The version with tetrahedral-symmetry polyhedra is the cubic-octahedral honeycomb, using cuboctahedra, octahedra, and cubes). [9]

Summary enumeration of compact uniform honeycombs

This is the complete enumeration of the 76 Wythoffian uniform honeycombs. The alternations are listed for completeness, but most are non-uniform.

IndexCoxeter group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
H1
[4,3,5]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[4,3,5]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 5.pngCDel node c4.png
15CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
[1+,4,(3,5)+](2)CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png (= CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png)
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
[4,3,5]+(1)CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
H2
[3,5,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
[3,5,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 5.pngCDel node c3.pngCDel 3.pngCDel node c4.png
6CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
[2+[3,5,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c1.png
5CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png[2+[3,5,3]]+(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
H3
[5,31,1]
CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
[5,31,1]
CDel node c3.pngCDel 5.pngCDel node c4.pngCDel split1.pngCDel nodeab c1-2.png
4CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
[1[5,31,1]]=[5,3,4]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7)CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png[1[5,31,1]]+
=[5,3,4]+
(1)CDel node h.pngCDel 5.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
H4
[(4,3,3,3)]
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(4,3,3,3)]6CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png | CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png | CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
[2+[(4,3,3,3)]]
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
3CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png | CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png[2+[(4,3,3,3)]]+(1)CDel label4.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
H5
[5,3,5]
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,5]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 5.pngCDel node c4.png
6CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
[2+[5,3,5]]
CDel branch c1.pngCDel 5a5b.pngCDel nodeab c2.png
3CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png[2+[5,3,5]]+(1)CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
H6
[(5,3,3,3)]
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(5,3,3,3)]6CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png | CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png | CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png | CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png | CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
[2+[(5,3,3,3)]]
CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
3CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png | CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png[2+[(5,3,3,3)]]+(1)CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
H7
[(3,4)[2]]
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4)[2]]2CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
[2+[(3,4)[2]]]
CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label4.png
1CDel label4.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
[2+[(3,4)[2]]]
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
1CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[2+[(3,4)[2]]]
CDel label4.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label4.png
1CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png[2+[(3+,4)[2]]](1)CDel label4.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
[(2,2)+[(3,4)[2]]]
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label4.png
1CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png[(2,2)+[(3,4)[2]]]+(1)CDel label4.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
H8
[(5,3,4,3)]
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(5,3,4,3)]6CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
[2+[(5,3,4,3)]]
CDel label4.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png
3CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png | CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png[2+[(5,3,4,3)]]+(1)CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
H9
[(3,5)[2]]
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5)[2]]2CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
[2+[(3,5)[2]]]
CDel label5.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label5.png
1CDel label5.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
[2+[(3,5)[2]]]
CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png
1CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[2+[(3,5)[2]]]
CDel label5.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c1-2.pngCDel label5.png
1CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
[(2,2)+[(3,5)[2]]]
CDel label5.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label5.png
1CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png[(2,2)+[(3,5)[2]]]+(1)CDel label5.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png

See also

Notes

  1. Humphreys, 1990, page 141, 6.9 List of hyperbolic Coxeter groups, figure 2
  2. 1 2 Felikson, 2002
  3. Wendy Y. Krieger, Walls and bridges: The view from six dimensions, Symmetry: Culture and Science Volume 16, Number 2, pages 171–192 (2005)
  4. 1 2 "Spd{3,5,3".}
  5. "Pd{3,5,3".}
  6. 1 2 3 4 5 "Hyperbolic Tesselations".
  7. "x4x3o8o".
  8. "lt-o8o4xb3x".
  9. 1 2 "Hyperbolic Tessellations – Triangular Prismatic Domains".

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Uniform 8-polytope</span> Polytope contained by 7-polytope facets

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

<span class="mw-page-title-main">Uniform 7-polytope</span> Polytope

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

<span class="mw-page-title-main">Uniform 9-polytope</span> Type of geometric object

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">Uniform 6-polytope</span> Uniform 6-dimensional polytope

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Uniform 10-polytope</span> Type of geometrical object

In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 cubic honeycomb</span>

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.

<span class="mw-page-title-main">Triangular tiling honeycomb</span>

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

<span class="mw-page-title-main">Square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.

<span class="mw-page-title-main">Order-4 square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.

<span class="mw-page-title-main">Order-4 octahedral honeycomb</span>

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.

References