Cube-octahedron honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | {(3,4,3,4)} or {(4,3,4,3)} |
Coxeter diagrams | ↔ ↔ |
Cells | {4,3} {3,4} r{4,3} |
Faces | triangle {3} square {4} |
Vertex figure | rhombicuboctahedron |
Coxeter group | [(4,3)[2]] |
Properties | Vertex-transitive, edge-transitive |
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.
Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.
Wide-angle perspective views:
It contains a subgroup H2 tiling, the alternated order-4 hexagonal tiling, , with vertex figure (3.4)4.
A lower symmetry form, index 6, of this honeycomb can be constructed with [(4,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram . This lower symmetry can be extended by restoring one mirror as .
↔ = | ↔ = | ↔ = |
There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group : , , , , .
Rectified cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | r{(4,3,4,3)} |
Coxeter diagrams | |
Cells | r{4,3} rr{3,4} |
Faces | triangle {3} square {4} |
Vertex figure | cuboid |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The rectified cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cuboctahedron and rhombicuboctahedron cells, in a cuboid vertex figure. It has a Coxeter diagram .
Cyclotruncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(4,3,4,3)} |
Coxeter diagrams | |
Cells | t{4,3} {3,4} |
Faces | triangle {3} octagon {8} |
Vertex figure | square antiprism |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cube and octahedron cells, in a square antiprism vertex figure. It has a Coxeter diagram .
It can be seen as somewhat analogous to the trioctagonal tiling, which has truncated square and triangle facets:
Cyclotruncated octahedral-cubic honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(3,4,3,4)} |
Coxeter diagrams | ↔ ↔ |
Cells | {4,3} t{3,4} |
Faces | square {4} hexagon {6} |
Vertex figure | triangular antiprism |
Coxeter group | [[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated octahedral-cubic honeycomb is a compact uniform honeycomb, constructed from cube and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram .
It contains an H2 subgroup tetrahexagonal tiling alternating square and hexagonal faces, with Coxeter diagram or half symmetry :
Trigonal trapezohedron ↔ | Half domain ↔ | H2 subgroup, rhombic *3232 ↔ |
A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,4,3*)], , represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram . This lower symmetry can be extended by restoring one mirror as .
↔ = | ↔ = |
Truncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | t{(4,3,4,3)} |
Coxeter diagrams | |
Cells | t{3,4} t{4,3} rr{3,4} tr{4,3} |
Faces | triangle {3} square {4} hexagon {6} octagon {8} |
Vertex figure | rectangular pyramid |
Coxeter group | [(4,3)[2]] |
Properties | Vertex-transitive |
The truncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated octahedron, truncated cube, rhombicuboctahedron, and truncated cuboctahedron cells, in a rectangular pyramid vertex figure. It has a Coxeter diagram .
Omnitruncated cubic-octahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | tr{(4,3,4,3)} |
Coxeter diagrams | |
Cells | tr{3,4} |
Faces | square {4} hexagon {6} octagon {8} |
Vertex figure | Rhombic disphenoid |
Coxeter group | [2[(4,3)[2]]] or [(2,2)+[(4,3)[2]]], |
Properties | Vertex-transitive, edge-transitive, cell-transitive |
The omnitruncated cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from truncated cuboctahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram with [2,2]+ (order 4) extended symmetry in its rhombic disphenoid vertex figure.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.
In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.
The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.
In the geometry of hyperbolic 3-space, the dodecahedral-icosahedral honeycomb is a uniform honeycomb, constructed from dodecahedron, icosahedron, and icosidodecahedron cells, in a rhombicosidodecahedron vertex figure.
In the geometry of hyperbolic 3-space, the tetrahedron-cube honeycomb is a compact uniform honeycomb, constructed from cube, tetrahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedron-octahedron honeycomb is a compact uniform honeycomb, constructed from octahedron and tetrahedron cells, in a rhombicuboctahedron vertex figure.
In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the cubic-square tiling honeycomb is a paracompact uniform honeycomb, constructed from cube and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedral-square tiling honeycomb is a paracompact uniform honeycomb, constructed from tetrahedron, cuboctahedron and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.