Dodecahedral-icosahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | {(3,5,3,5)} or {(5,3,5,3)} |
Coxeter diagram | or |
Cells | {5,3} {3,5} r{5,3} |
Faces | triangle {3} pentagon {5} |
Vertex figure | rhombicosidodecahedron |
Coxeter group | [(5,3)[2]] |
Properties | Vertex-transitive, edge-transitive |
In the geometry of hyperbolic 3-space, the dodecahedral-icosahedral honeycomb is a uniform honeycomb, constructed from dodecahedron, icosahedron, and icosidodecahedron cells, in a rhombicosidodecahedron vertex figure.
A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.
Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.
Wide-angle perspective views:
There are 5 related uniform honeycombs generated within the same family, generated with 2 or more rings of the Coxeter group : , , , , .
Rectified dodecahedral-icosahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | r{(5,3,5,3)} |
Coxeter diagrams | or |
Cells | r{5,3} rr{3,5} |
Faces | triangle {3} square {4} pentagon {5} |
Vertex figure | cuboid |
Coxeter group | [[(5,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The rectified dodecahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosidodecahedron and rhombicosidodecahedron cells, in a cuboid vertex figure. It has a Coxeter diagram .
Cyclotruncated dodecahedral-icosahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(5,3,5,3)} |
Coxeter diagrams | or |
Cells | t{5,3} {3,5} |
Faces | triangle {3} decagon {10} |
Vertex figure | pentagonal antiprism |
Coxeter group | [[(5,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated dodecahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from truncated dodecahedron and icosahedron cells, in a pentagonal antiprism vertex figure. It has a Coxeter diagram .
Cyclotruncated icosahedral-dodecahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | ct{(3,5,3,5)} |
Coxeter diagrams | or |
Cells | {5,3} t{3,5} |
Faces | pentagon {5} hexagon {6} |
Vertex figure | triangular antiprism |
Coxeter group | [[(5,3)[2]]], |
Properties | Vertex-transitive, edge-transitive |
The cyclotruncated icosahedral-dodecahedral honeycomb is a compact uniform honeycomb, constructed from dodecahedron and truncated icosahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram .
It can be seen as somewhat analogous to the pentahexagonal tiling, which has pentagonal and hexagonal faces:
Truncated dodecahedral-icosahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | t{(5,3,5,3)} |
Coxeter diagrams | or or or |
Cells | t{3,5} t{5,3} rr{3,5} tr{5,3} |
Faces | triangle {3} square {4} pentagon {5} hexagon {6} decagon {10} |
Vertex figure | trapezoidal pyramid |
Coxeter group | [(5,3)[2]] |
Properties | Vertex-transitive |
The truncated dodecahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from truncated icosahedron, truncated dodecahedron, rhombicosidodecahedron, and truncated icosidodecahedron cells, in a trapezoidal pyramid vertex figure. It has a Coxeter diagram .
Omnitruncated dodecahedral-icosahedral honeycomb | |
---|---|
Type | Compact uniform honeycomb |
Schläfli symbol | tr{(5,3,5,3)} |
Coxeter diagrams | |
Cells | tr{3,5} |
Faces | square {4} hexagon {6} decagon {10} |
Vertex figure | Rhombic disphenoid |
Coxeter group | [(2,2)+[(5,3)[2]]], |
Properties | Vertex-transitive, edge-transitive, cell-transitive |
The omnitruncated dodecahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from truncated icosidodecahedron cells, in a rhombic disphenoid vertex figure. It has a Coxeter diagram .
In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.
In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.
In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.
In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.
In hyperbolic geometry, the order-5 dodecahedral honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {5,3,5}, it has five dodecahedral cells around each edge, and each vertex is surrounded by twenty dodecahedra. Its vertex figure is an icosahedron.
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
In geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral).
The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedral-dodecahedral honeycomb is a compact uniform honeycomb, constructed from dodecahedron, tetrahedron, and icosidodecahedron cells, in a rhombitetratetrahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedral-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosahedron, tetrahedron, and octahedron cells, in an icosidodecahedron vertex figure. It has a single-ring Coxeter diagram , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the octahedron-dodecahedron honeycomb is a compact uniform honeycomb, constructed from dodecahedron, octahedron, and icosidodecahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the cubic-icosahedral honeycomb is a compact uniform honeycomb, constructed from icosahedron, cube, and cuboctahedron cells, in an icosidodecahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.