Paracompact uniform honeycombs

Last updated
Example paracompact regular honeycombs
H3 336 CC center.png
{3,3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 633 FC boundary.png
{6,3,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
H3 436 CC center.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 634 FC boundary.png
{6,3,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
H3 536 CC center.png
{5,3,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 635 FC boundary.png
{6,3,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H3 636 FC boundary.png
{6,3,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 363 FC boundary.png
{3,6,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H3 443 FC boundary.png
{4,4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 344 CC center.png
{3,4,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444 FC boundary.png
{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

Contents

Regular paracompact honeycombs

Of the uniform paracompact H3 honeycombs, 11 are regular , meaning that their group of symmetries acts transitively on their flags. These have Schläfli symbol {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}, and are shown below. Four have finite Ideal polyhedral cells: {3,3,6}, {4,3,6}, {3,4,4}, and {5,3,6}.

11 paracompact regular honeycombs
H3 633 FC boundary.png
{6,3,3}
H3 634 FC boundary.png
{6,3,4}
H3 635 FC boundary.png
{6,3,5}
H3 636 FC boundary.png
{6,3,6}
H3 443 FC boundary.png
{4,4,3}
H3 444 FC boundary.png
{4,4,4}
H3 336 CC center.png
{3,3,6}
H3 436 CC center.png
{4,3,6}
H3 536 CC center.png
{5,3,6}
H3 363 FC boundary.png
{3,6,3}
H3 344 CC center.png
{3,4,4}
Name Schläfli
Symbol
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
Dual Coxeter
group
Order-6 tetrahedral honeycomb {3,3,6}CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {3,3} {3}{6} {3,6} {6,3,3}[6,3,3]
Hexagonal tiling honeycomb {6,3,3}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {6,3} {6}{3} {3,3} {3,3,6}
Order-4 octahedral honeycomb {3,4,4}CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {3,4} {3}{4} {4,4} {4,4,3}[4,4,3]
Square tiling honeycomb {4,4,3}CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png {4,4} {4}{3} {4,3} {3,4,4}
Triangular tiling honeycomb {3,6,3}CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png {3,6} {3}{3} {6,3} Self-dual[3,6,3]
Order-6 cubic honeycomb {4,3,6}CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {4,3} {4}{4} {3,6} {6,3,4}[6,3,4]
Order-4 hexagonal tiling honeycomb {6,3,4}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {6,3} {6}{4} {3,4} {4,3,6}
Order-4 square tiling honeycomb {4,4,4}CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,4} {4}{4} {4,4} Self-dual[4,4,4]
Order-6 dodecahedral honeycomb {5,3,6}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {5,3} {5}{5} {3,6} {6,3,5}[6,3,5]
Order-5 hexagonal tiling honeycomb {6,3,5}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {6,3} {6}{5} {3,5} {5,3,6}
Order-6 hexagonal tiling honeycomb {6,3,6}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {6,3} {6}{6} {3,6} Self-dual[6,3,6]

Coxeter groups of paracompact uniform honeycombs

Hyperbolic subgroup tree 36.png Hyperbolic subgroup tree 344.png
These graphs show subgroup relations of paracompact hyperbolic Coxeter groups. Order 2 subgroups represent bisecting a Goursat tetrahedron with a plane of mirror symmetry.

This is a complete enumeration of the 151 unique Wythoffian paracompact uniform honeycombs generated from tetrahedral fundamental domains (rank 4 paracompact coxeter groups). The honeycombs are indexed here for cross-referencing duplicate forms, with brackets around the nonprimary constructions.

The alternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, a Vinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones. Seven uniform honeycombs that arise here as alternations have been numbered 152 to 158, after the 151 Wythoffian forms not requiring alternation for their construction.

Tetrahedral hyperbolic paracompact group summary
Coxeter group Simplex
volume
Commutator subgroup Unique honeycomb count
[6,3,3]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png0.0422892336[1+,6,(3,3)+] = [3,3[3]]+15
[4,4,3]CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png0.0763304662[1+,4,1+,4,3+]15
[3,3[3]]CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png0.0845784672[3,3[3]]+4
[6,3,4]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png0.1057230840[1+,6,3+,4,1+] = [3[]x[]]+15
[3,41,1]CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png0.1526609324[3+,41+,1+]4
[3,6,3]CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png0.1691569344[3+,6,3+]8
[6,3,5]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png0.1715016613[1+,6,(3,5)+] = [5,3[3]]+15
[6,31,1]CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png0.2114461680[1+,6,(31,1)+] = [3[]x[]]+4
[4,3[3]]CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png0.2114461680[1+,4,3[3]]+ = [3[]x[]]+4
[4,4,4]CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png0.2289913985[4+,4+,4+]+6
[6,3,6]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png0.2537354016[1+,6,3+,6,1+] = [3[3,3]]+8
[(4,4,3,3)]CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png0.3053218647[(4,1+,4,(3,3)+)]4
[5,3[3]]CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png0.3430033226[5,3[3]]+4
[(6,3,3,3)]CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png0.3641071004[(6,3,3,3)]+9
[3[]x[]]CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png0.4228923360[3[]x[]]+1
[41,1,1]CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png0.4579827971[1+,41+,1+,1+]0
[6,3[3]]CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png0.5074708032[1+,6,3[3]] = [3[3,3]]+2
[(6,3,4,3)]CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png0.5258402692[(6,3+,4,3+)]9
[(4,4,4,3)]CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png0.5562821156[(4,1+,4,1+,4,3+)]9
[(6,3,5,3)]CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png0.6729858045[(6,3,5,3)]+9
[(6,3,6,3)]CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png0.8457846720[(6,3+,6,3+)]5
[(4,4,4,4)]CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png0.9159655942[(4+,4+,4+,4+)]1
[3[3,3]]CDel branch.pngCDel splitcross.pngCDel branch.png1.014916064[3[3,3]]+0

The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003. [1] The smallest paracompact form in H3 can be represented by CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png or CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, or [,3,3,] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4] : CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 2a2b-cross.pngCDel nodeab c3.png. The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramid is CDel node.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png or CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, constructed as [4,4,1+,4] = [,4,4,] : CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel 2a2b-cross.pngCDel nodeab c3.png.

Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,,3)),((3,,3))] or CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, [(3,4,4,1+,4)] = [((4,,3)),((3,,4))] or CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, [(4,4,4,1+,4)] = [((4,,4)),((4,,4))] or CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png. CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-43.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-43.pngCDel node c3.pngCDel split1-43.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-44.pngCDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel labelinfin.png.

Another nonsimplectic half groups is CDel nodeab c1-2.pngCDel split2-44.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel node c3.pngCDel split1-uu.pngCDel nodeab c1-2.pngCDel 2a2b-cross.pngCDel nodeab c1-2.pngCDel split2-uu.pngCDel node c3.png.

A radical nonsimplectic subgroup is CDel label4.pngCDel branch c1-2.pngCDel 4a4b.pngCDel branch.pngCDel labels.pngCDel node c1.pngCDel splitplit1u-44.pngCDel branch3u c2.pngCDel 4a4buc-cross.pngCDel branch3u c1.pngCDel splitplit2u-44.pngCDel node c2.png, which can be doubled into a triangular prism domain as CDel node c1.pngCDel splitplit1u-44.pngCDel branch3u c2.pngCDel 4a4buc-cross.pngCDel branch3u c3.pngCDel splitplit2u-44.pngCDel node c4.pngCDel branchu c1-4.pngCDel 4a4b.pngCDel branch c2-3.pngCDel split2-44.pngCDel node.pngCDel labelh.png.

Pyramidal hyperbolic paracompact group summary
DimensionRankGraphs
H35

CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-43.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-53.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-63.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2-53.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-54.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-55.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-63.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-64.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-65.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-66.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-53.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-43.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png | CDel branchu.pngCDel split2-54.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-55.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-63.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-64.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-65.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-66.pngCDel node.pngCDel split1.pngCDel branchu.png

Linear graphs

[6,3,3] family

#Honeycomb name
Coxeter diagram: CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
1 hexagonal (hexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{6,3,3}
---(4)
Uniform tiling 63-t0.svg
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron
H3 633 FC boundary.png
2 rectified hexagonal (rihexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t1{6,3,3} or r{6,3,3}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
--(3)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
H3 633 boundary 0100.png
3 rectified order-6 tetrahedral (rath)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,3,6} or r{3,3,6}
(6)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
--(2)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Rectified order-6 tetrahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism
H3 336 CC center 0100.png
4 order-6 tetrahedral (thon)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,6}
(∞)
Uniform polyhedron-33-t2.png
(3.3.3)
--- Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular tiling
H3 336 CC center.png
5 truncated hexagonal (thexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,1{6,3,3} or t{6,3,3}
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
--(3)
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-3 hexagonal tiling honeycomb verf.png
Triangular pyramid
H3 633-1100.png
6 cantellated hexagonal (srihexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{6,3,3} or rr{6,3,3}
(1)
Uniform polyhedron-33-t1.svg
3.3.3.3
(2)
Triangular prism.png
(4.4.3)
-(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Cantellated order-3 hexagonal tiling honeycomb verf.png H3 633-1010.png
7 runcinated hexagonal (sidpithexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{6,3,3}
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
(3)
Triangular prism.png
(4.4.3)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
Runcinated order-3 hexagonal tiling honeycomb verf.png H3 633-1001.png
8 cantellated order-6 tetrahedral (srath)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,3,6} or rr{3,3,6}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
-(2)
Hexagonal prism.png
(4.4.6)
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
Cantellated order-6 tetrahedral honeycomb verf.png H3 633-0101.png
9 bitruncated hexagonal (tehexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{6,3,3} or 2t{6,3,3}
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
--(2)
Uniform tiling 63-t12.svg
(6.6.6)
Bitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0110.png
10 truncated order-6 tetrahedral (tath)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,3,6} or t{3,3,6}
(6)
Uniform polyhedron-33-t12.png
(3.6.6)
--(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Truncated order-6 tetrahedral honeycomb verf.png H3 633-0011.png
11 cantitruncated hexagonal (grihexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{6,3,3} or tr{6,3,3}
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Triangular prism.png
(4.4.3)
-(2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1110.png
12 runcitruncated hexagonal (prath)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{6,3,3}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(2)
Triangular prism.png
(4.4.3)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1101.png
13 runcitruncated order-6 tetrahedral (prihexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,6}
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
Runcitruncated order-6 tetrahedral honeycomb verf.png H3 633-1011.png
14 cantitruncated order-6 tetrahedral (grath)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,3,6} or tr{3,3,6}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
-(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t12.svg
(6.6.6)
Cantitruncated order-6 tetrahedral honeycomb verf.png H3 633-0111.png
15 omnitruncated hexagonal (gidpithexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{6,3,3}
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1111.png
Alternated forms
#Honeycomb name
Coxeter diagram: CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[137] alternated hexagonal (ahexah)
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
--(4)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(4)
Uniform polyhedron-33-t2.png
(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[138] cantic hexagonal (tahexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
-(2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t12.png
(3.6.6)
Cantic hexagonal tiling honeycomb verf.png
[139] runcic hexagonal (birahexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Runcic hexagonal tiling honeycomb verf.png
[140] runcicantic hexagonal (bitahexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform polyhedron-63-t1-1.svg
(3.6.3.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
Runcicantic hexagonal tiling honeycomb verf.png
Nonuniform snub rectified order-6 tetrahedral
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,3,6}
Uniform polyhedron-33-s012.png Uniform tiling 63-h12.png Tetrahedron.png
Irr. (3.3.3)
Alternated cantitruncated order-6 tetrahedral honeycomb vertex figure.png
Nonuniform cantic snub order-6 tetrahedral
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr3{3,3,6}
Nonuniform omnisnub order-6 tetrahedral
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{6,3,3}
Uniform polyhedron-33-s012.png Uniform tiling 63-snub.png Tetrahedron.png
Irr. (3.3.3)

[6,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [6,3,4] or CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
16(Regular) order-4 hexagonal (shexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{6,3,4}
---(8)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.svg
(6.6.6)
Order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3.3.3.3)
H3 634 FC boundary.png
17 rectified order-4 hexagonal (rishexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t1{6,3,4} or r{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
--(4)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
H3 634 boundary 0100.png
18 rectified order-6 cubic (rihach)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,3,6} or r{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
--(2)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Rectified order-6 cubic honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 436 CC center 0100.png
19 order-6 cubic (hachon)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
{4,3,6}
(20)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
--- Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3.3.3.3.3.3)
H3 436 CC center.png
20 truncated order-4 hexagonal (tishexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{6,3,4} or t{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
--(4)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-1100.png
21 bitruncated order-6 cubic (chexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{6,3,4} or 2t{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
--(2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.svg
(6.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
22 truncated order-6 cubic (thach)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1{4,3,6} or t{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
--(1)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Truncated order-6 cubic honeycomb verf.png H3 634-0011.png
23 cantellated order-4 hexagonal (srishexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,2{6,3,4} or rr{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
-(2)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
Cantellated order-4 hexagonal tiling honeycomb verf.png H3 634-1010.png
24 cantellated order-6 cubic (srihach)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,2{4,3,6} or rr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
-(2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
Cantellated order-6 cubic honeycomb verf.png H3 634-0101.png
25 runcinated order-6 cubic (sidpichexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(3)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.svg
(6.6.6)
Runcinated order-4 hexagonal tiling honeycomb verf.png H3 634-1001.png
26 cantitruncated order-4 hexagonal (grishexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,2{6,3,4} or tr{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
-(2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1110.png
27 cantitruncated order-6 cubic (grihach)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2{4,3,6} or tr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
-(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.svg
(6.6.6)
Cantitruncated order-6 cubic honeycomb verf.png H3 634-0111.png
28 runcitruncated order-4 hexagonal (prihach)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1101.png
29 runcitruncated order-6 cubic (prishexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,3{4,3,6}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
Runcitruncated order-6 cubic honeycomb verf.png H3 634-1011.png
30 omnitruncated order-6 cubic (gidpichexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1111.png
Alternated forms
#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[87] alternated order-6 cubic (ahach)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
h{4,3,6}
Tetrahedron.png CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
(3.3.3)
   Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
[88] cantic order-6 cubic (tachach)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
h2{4,3,6}
(2)
Truncated tetrahedron.png
(3.6.6)
--(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t12.svg
(6.6.6)
Cantic order-6 cubic honeycomb verf.png
[89] runcic order-6 cubic (birachach)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{4,3,6}
(1)
Tetrahedron.png
(3.3.3)
--(1)
Uniform tiling 63-t0.svg
(6.6.6)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
Runcic order-6 cubic honeycomb verf.png
[90] runcicantic order-6 cubic (bitachach)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{4,3,6}
(1)
Truncated tetrahedron.png
(3.6.6)
--(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Runcicantic order-6 cubic honeycomb verf.png
[141] alternated order-4 hexagonal (ashexah)
CDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
h{6,3,4}
-- Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142] cantic order-4 hexagonal (tashexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
h1{6,3,4}
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
-(2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
Cantic order-4 hexagonal tiling honeycomb verf.png
[143] runcic order-4 hexagonal (birashexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
h3{6,3,4}
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
Runcic order-4 hexagonal tiling honeycomb verf.png
[144] runcicantic order-4 hexagonal (bitashexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
h2,3{6,3,4}
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
Runcicantic order-4 hexagonal tiling honeycomb verf.png
[151] quarter order-4 hexagonal (quishexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
q{6,3,4}
(3)
Uniform polyhedron-33-t01.png
(1)
Uniform polyhedron-33-t0.png
-(1)
Uniform tiling 333-t0.png
(3)
Uniform tiling 333-t02.png
Paracompact honeycomb DP3 1100 verf.png
Nonuniform bisnub order-6 cubic
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png
2s{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
--CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Tetrahedron.png
+(3.3.3)
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png
Nonuniform runcic bisnub order-6 cubic
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonuniform snub rectified order-6 cubic
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Snub hexahedron.png
(3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform runcic snub rectified order-6 cubic
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
sr3{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node 1.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonuniform snub rectified order-4 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
sr{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
-CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform runcisnub rectified order-4 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
sr3{6,3,4}
Nonuniform omnisnub rectified order-6 cubic
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Snub hexahedron.png
(3.3.3.3.4)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
(3.3.3.4)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[6,3,5] family

#Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
31 order-5 hexagonal (phexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{6,3,5}
---(20)
Uniform tiling 63-t0.svg
(6)3
Order-5 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Icosahedron
H3 635 FC boundary.png
32 rectified order-5 hexagonal (riphexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t1{6,3,5} or r{6,3,5}
(2)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
--(5)
Uniform tiling 63-t1.png
(3.6)2
Rectified order-5 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png
(5.4.4)
H3 635 boundary 0100.png
33 rectified order-6 dodecahedral (rihed)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1{5,3,6} or r{5,3,6}
(5)
Uniform polyhedron-53-t1.png
(3.5.3.5)
--(2)
Uniform tiling 63-t2.png
(3)6
Rectified order-6 dodecahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 536 CC center 0100.png
34 order-6 dodecahedral (hedhon)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
{5,3,6}
Uniform polyhedron-53-t0.png
(5.5.5)
---()
Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3)6
H3 536 CC center.png
35 truncated order-5 hexagonal (tiphexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t0,1{6,3,5} or t{6,3,5}
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
--(5)
Uniform tiling 63-t01.png
3.12.12
Truncated order-5 hexagonal tiling honeycomb verf.png H3 635-1100.png
36 cantellated order-5 hexagonal (sriphexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,2{6,3,5} or rr{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Pentagonal prism.png
(5.4.4)
-(2)
Uniform tiling 63-t02.png
3.4.6.4
Cantellated order-5 hexagonal tiling honeycomb verf.png H3 635-1010.png
37 runcinated order-6 dodecahedral (sidpidohexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
-(6)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t0.svg
(6)3
Runcinated order-5 hexagonal tiling honeycomb verf.png H3 635-1001.png
38 cantellated order-6 dodecahedral (srihed)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,2{5,3,6} or rr{5,3,6}
(2)
Uniform polyhedron-53-t02.png
(4.3.4.5)
-(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t1.png
(3.6)2
Cantellated order-6 dodecahedral honeycomb verf.png H3 635-0101.png
39 bitruncated order-6 dodecahedral (dohexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1,2{6,3,5} or 2t{6,3,5}
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
--(2)
Uniform tiling 63-t12.svg
(6)3
Bitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0110.png
40 truncated order-6 dodecahedral (thed)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1{5,3,6} or t{5,3,6}
(6)
Uniform polyhedron-53-t01.png
(3.10.10)
--(1)
Uniform tiling 63-t2.png
(3)6
Truncated order-6 dodecahedral honeycomb verf.png H3 635-0011.png
41 cantitruncated order-5 hexagonal (griphexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,2{6,3,5} or tr{6,3,5}
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
(1)
Pentagonal prism.png
(5.4.4)
-(2)
Uniform tiling 63-t012.svg
4.6.10
Cantitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1110.png
42 runcitruncated order-5 hexagonal (prihed)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,3{6,3,5}
(1)
Uniform polyhedron-53-t02.png
(4.3.4.5)
(1)
Pentagonal prism.png
(5.4.4)
(2)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t01.png
3.12.12
Runcitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1101.png
43 runcitruncated order-6 dodecahedral (priphaxh)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,3{5,3,6}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Decagonal prism.png
(10.4.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
3.4.6.4
Runcitruncated order-6 dodecahedral honeycomb verf.png H3 635-1011.png
44 cantitruncated order-6 dodecahedral (grihed)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2{5,3,6} or tr{5,3,6}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
-(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t12.svg
(6)3
Cantitruncated order-6 dodecahedral honeycomb verf.png H3 635-0111.png
45 omnitruncated order-6 dodecahedral (gidpidohaxh)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2,3{6,3,5}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Decagonal prism.png
(10.4.4)
(1)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t012.svg
4.6.12
Omnitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1111.png
Alternated forms
#Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[145] alternated order-5 hexagonal (aphexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
h{6,3,5}
---(20)
Uniform tiling 333-t1.png
(3)6
(12)
Icosahedron.png
(3)5
Uniform polyhedron-53-t12.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(5.6.6)
[146] cantic order-5 hexagonal (taphexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
h2{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
-(2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
Cantic order-5 hexagonal tiling honeycomb verf.png
[147] runcic order-5 hexagonal (biraphexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
h3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
Runcic order-5 hexagonal tiling honeycomb verf.png
[148] runcicantic order-5 hexagonal (bitaphexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
h2,3{6,3,5}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
Runcicantic order-5 hexagonal tiling honeycomb verf.png
Nonuniform snub rectified order-6 dodecahedral
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.png
sr{5,3,6}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
- Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
irr. tet
Nonuniform omnisnub order-5 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
ht0,1,2,3{6,3,5}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.6.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
irr. tet

[6,3,6] family

There are 9 forms, generated by ring permutations of the Coxeter group: [6,3,6] or CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png

#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
46 order-6 hexagonal (hihexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{6,3,6}
---(20)
Uniform tiling 63-t0.svg CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(6.6.6)
Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
H3 636 FC boundary.png
47 rectified order-6 hexagonal (rihihexah)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t1{6,3,6} or r{6,3,6}
(2)
Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
--(6)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
H3 636 boundary 0100.png
48 truncated order-6 hexagonal (thihexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t0,1{6,3,6} or t{6,3,6}
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
--(6)
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-6 hexagonal tiling honeycomb verf.png H3 636-1100.png
49 cantellated order-6 hexagonal (srihihexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,2{6,3,6} or rr{6,3,6}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Hexagonal prism.png
(4.4.6)
-(2)
Uniform tiling 63-t012.svg
(3.6.4.6)
Cantellated order-6 hexagonal tiling honeycomb verf.png H3 636-1010.png
50 Runcinated order-6 hexagonal (spiddihexah)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,3{6,3,6}
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(3)
Hexagonal prism.png
(4.4.6)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
Runcinated order-6 hexagonal tiling honeycomb verf.png H3 636-1001.png
51 cantitruncated order-6 hexagonal (grihihexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,1,2{6,3,6} or tr{6,3,6}
(1)
Uniform tiling 63-t12.svg
(6.6.6)
(1)
Hexagonal prism.png
(4.4.6)
-(2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1110.png
52 runcitruncated order-6 hexagonal (prihihexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,1,3{6,3,6}
(1)
Uniform tiling 63-t012.svg
(3.6.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1011.png
53 omnitruncated order-6 hexagonal (gidpiddihexah)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
t0,1,2,3{6,3,6}
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1111.png
[1] bitruncated order-6 hexagonal (hexah)
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t1,2{6,3,6} or 2t{6,3,6}
(2)
Uniform tiling 63-t12.svg
(6.6.6)
--(2)
Uniform tiling 63-t12.svg
(6.6.6)
Bitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-0110.png
Alternated forms
#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[47] rectified order-6 hexagonal (rihihexah)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
q{6,3,6} = r{6,3,6}
(2)
Uniform tiling 63-t2.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
--(6)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
H3 636 boundary 0100.png
[54] triangular (trah)
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h{6,3,6} = {3,6,3}
---CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t0.svg CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
[55] cantic order-6 hexagonal (ritrah)
( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h2{6,3,6} = r{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-6 hexagonal tiling honeycomb verf.png H3 363 boundary 0100.png
[149] runcic order-6 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{6,3,6}
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-6 hexagonal tiling honeycomb verf.png
[150] runcicantic order-6 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{6,3,6}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-6 hexagonal tiling honeycomb verf.png
[137] alternated hexagonal (ahexah)
(CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
2s{6,3,6} = h{6,3,3}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
--CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
Nonuniform snub rectified order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
sr{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
Trigonal antiprism.png
(3.3.3.3)
-CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform alternated runcinated order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
ht0,3{6,3,6}
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Tetrahedron.png
+(3.3.3)
Nonuniform omnisnub order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
ht0,1,2,3{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[3,6,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,6,3] or CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
54 triangular (trah)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{3,6,3}
---()
Uniform tiling 63-t2.png
{3,6}
Uniform tiling 63-t0.svg CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
55 rectified triangular (ritrah)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
t1{3,6,3} or r{3,6,3}
(2)
Uniform tiling 63-t0.svg
(6)3
--(3)
Uniform tiling 63-t1.png
(3.6)2
Rectified triangular tiling honeycomb verf.png
(3.4.4)
H3 363 boundary 0100.png
56 cantellated triangular (sritrah)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{3,6,3} or rr{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
(2)
Triangular prism.png
(4.4.3)
-(2)
Uniform tiling 63-t02.png
(3.6.4.6)
Cantellated triangular tiling honeycomb verf.png H3 363-1010.png
57 runcinated triangular (spidditrah)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,6,3}
(1)
Uniform tiling 63-t2.png
(3)6
(6)
Triangular prism.png
(4.4.3)
(6)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 63-t2.png
(3)6
Runcinated triangular tiling honeycomb verf.png H3 363-1001.png
58 bitruncated triangular (ditrah)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{3,6,3} or 2t{3,6,3}
(2)
Uniform tiling 63-t01.png
(3.12.12)
--(2)
Uniform tiling 63-t01.png
(3.12.12)
Bitruncated triangular tiling honeycomb verf.png H3 363-0110.png
59 cantitruncated triangular (gritrah)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{3,6,3} or tr{3,6,3}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
-(2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated triangular tiling honeycomb verf.png H3 363-1110.png
60 runcitruncated triangular (pritrah)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,6,3}
(1)
Uniform tiling 63-t02.png
(3.6.4.6)
(1)
Triangular prism.png
(4.4.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t01.png
(6)3
Runcitruncated triangular tiling honeycomb verf.png H3 363-1101.png
61 omnitruncated triangular (gipidditrah)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,6,3}
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated triangular tiling honeycomb verf.png H3 363-1111.png
[1] truncated triangular (hexah)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t0,1{3,6,3} or t{3,6,3} = {6,3,3}
(1)
Uniform tiling 63-t0.svg
(6)3
--(3)
Uniform tiling 63-t12.svg
(6)3
Truncated triangular tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
H3 363-1100.png
Alternated forms
#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
Alt
[56] cantellated triangular (sritrah)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
s2{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
--(2)
Rhombitrihexagonal tiling snub edge coloring.png
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
Triangular prism.png
(3.4.4)
Cantellated triangular tiling honeycomb verf.png H3 363-1010.png
[60] runcitruncated triangular (pritrah)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
s2,3{3,6,3}
(1)
Uniform tiling 333-t012.png
(6)3
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
-(1)
Triangular prism.png
(4.4.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
(1)
Rhombitrihexagonal tiling snub edge coloring.png
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
(2)
Hexagonal prism.png
(4.4.6)
Runcitruncated triangular tiling honeycomb verf.png H3 363-1101.png
[137] alternated hexagonal (ahexah)
( CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png ) = (CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
s{3,6,3}
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
-- Uniform tiling 63-h12.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Tetrahedron.png
+(3)3
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
Scaliform runcisnub triangular (pristrah)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
s3{3,6,3}
Uniform tiling 333-t02.png
r{6,3}
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
- Triangular prism.png
(3.4.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Triangular cupola.png
tricup
Nonuniform omnisnub triangular tiling honeycomb (snatrah)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,6,3}
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Tetrahedron.png
+(3)3

[4,4,3] family

There are 15 forms, generated by ring permutations of the Coxeter group: [4,4,3] or CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
62 square (squah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,3}
---(6)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
Square tiling honeycomb verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Cube
H3 443 FC boundary.png
63 rectified square (risquah)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,4,3} or r{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
--(3)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
Rectified square tiling honeycomb verf.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
H3 443 boundary 0100.png
64 rectified order-4 octahedral (rocth)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,4,4} or r{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
--(2)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
65 order-4 octahedral (octh)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,4,4}
()
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
--- Uniform tiling 44-t0.svg CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
66 truncated square (tisquah)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1{4,4,3} or t{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
--(3)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
Truncated square tiling honeycomb verf.png H3 443-1100.png
67 truncated order-4 octahedral (tocth)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,4,4} or t{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
--(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
68 bitruncated square (osquah)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{4,4,3} or 2t{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
--(2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
Bitruncated square tiling honeycomb verf.png H3 443-0110.png
69 cantellated square (srisquah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{4,4,3} or rr{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
-(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
Cantellated square tiling honeycomb verf.png H3 443-1010.png
70 cantellated order-4 octahedral (srocth)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,4,4} or rr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
-(2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
Cantellated order-4 octahedral honeycomb verf.png H3 443-0101.png
71 runcinated square (sidposquah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(3)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
Runcinated square tiling honeycomb verf.png H3 443-1001.png
72 cantitruncated square (grisquah)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{4,4,3} or tr{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
-(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
Cantitruncated square tiling honeycomb verf.png H3 443-1110.png
73 cantitruncated order-4 octahedral (grocth)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,4,4} or tr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
-(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
Cantitruncated order-4 octahedral honeycomb verf.png H3 443-0111.png
74 runcitruncated square (procth)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
Runcitruncated square tiling honeycomb verf.png H3 443-1101.png
75 runcitruncated order-4 octahedral (prisquah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,4,4}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
Runcitruncated order-4 octahedral honeycomb verf.png H3 443-1011.png
76 omnitruncated square (gidposquah)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
Omnitruncated square tiling honeycomb verf.png H3 443-1111.png
Alternated forms
#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
Alt
[83] alternated square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
h{4,4,3}
---(6)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
(8)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
Uniform polyhedron-43-t1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
[84] cantic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.png
h2{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
--(2)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 44-t12.svg
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
Cantic square tiling honeycomb verf.png
[85] runcic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.png
h3{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
--(1)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg .
(4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
Runcic square tiling honeycomb verf.png
[86] runcicantic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
--(1)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
Runcicantic square tiling honeycomb verf.png
[153] alternated rectified square
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10.pngCDel 2a2b-cross.pngCDel nodes 10ru.pngCDel split2.pngCDel node.png
hr{4,4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
--CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
{}x{3}
157CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 44-t12.svg
--CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
{}x{6}
Scaliform snub order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 44-h01.png
--CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.svg
{}v{4}
Scaliform runcisnub order-4 octahedral
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
s3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.svg
CDel node 1.pngCDel 2.pngCDel node h.pngCDel 3.pngCDel node h.png
Triangular prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t12.svg
cup-4
152 snub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
s{4,4,3}
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron.png
--CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
{3,3} Alternated truncated order-3 square tiling honeycomb vertex figure.png
Nonuniform snub rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-s012.png
-CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Tetrahedron.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
irr. {3,3}
Nonuniform alternated runcitruncated square
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.svg
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Tetrahedron.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.svg
irr. {}v{4}
Nonuniform omnisnub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{4,4,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
irr. {3,3}

[4,4,4] family

There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png.

#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
77 order-4 square (sisquah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,4}
---CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[4,4,4]CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
78 truncated order-4 square (tissish)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{4,4,4} or t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
--CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
79 bitruncated order-4 square (dish)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{4,4,4} or 2t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
--CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
[[4,4,4]] Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
80 runcinated order-4 square (spiddish)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[[4,4,4]] Runcinated order-4 square tiling honeycomb verf.png H3 444-1001.png
81 runcitruncated order-4 square (prissish)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Runcitruncated order-4 square tiling honeycomb verf.png H3 444-1101.png
82 omnitruncated order-4 square (gipiddish)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[[4,4,4]] Omnitruncated order-4 square tiling honeycomb verf.png H3 444-1111.png
[62] square (squah)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t1{4,4,4} or r{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
--CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
[4,4,4] Uniform tiling 44-t0.svg
Square tiling
H3 443 FC boundary.png
[63] rectified square (risquah)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,2{4,4,4} or rr{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
-CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4,4,4] Cantellated order-4 square tiling honeycomb verf.png H3 444-1010.png
[66] truncated order-4 square (tisquah)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,1,2{4,4,4} or tr{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
-CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[4,4,4] Cantitruncated order-4 square tiling honeycomb verf.png H3 444-0111.png
Alternated constructions
#Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n4.png
Alt
[62] Square (squah)
( CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
(4.4.4.4)
-- Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png H3 443 FC boundary.png
[63] rectified square (risquah)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
s2{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
-CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4+,4,4] Cantellated order-4 square tiling honeycomb verf.png H3 443 boundary 0100.png
[77] order-4 square (sisquah)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
---CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[1+,4,4,4]
=[4,4,4]
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
[78] truncated order-4 square (tissish)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square (dish)
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
-- Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
[81] runcitruncated order-4 square tiling (prissish)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
s2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Runcitruncated order-4 square tiling honeycomb verf.png H3 444-1101.png
[83] alternated square
( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel ultra.pngCDel node.png ) ↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
hr{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
--CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png Hexahedron.png [4,1+,4,4] Uniform polyhedron-43-t1.png
(4.3.4.3)
[104] quarter order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel label4.png
q{4,4,4}
[[1+,4,4,4,1+]]
=[[4[4]]]
Paracompact honeycomb 4444 1100 verf.png
153 alternated rectified square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png
hrr{4,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
-CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
[((2+,4,4)),4]
154 alternated runcinated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t2.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Tetrahedron.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[[(4,4,4,2+)]] Alternated runcinated order-4 square tiling honeycomb vertex figure.png
Scaliform snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
s{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
--CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[4+,4,4]
Nonuniform runcic snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
s3{4,4,4}
[4+,4,4]
Nonuniform bisnub order-4 square tiling
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
2s{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
--CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
[[4,4+,4]] Alternated bitruncated order-4 square tiling honeycomb vertex figure.png
[152] snub square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
sr{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
-CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[(4,4)+,4] Alternated truncated order-3 square tiling honeycomb vertex figure.png
Nonuniform alternated runcitruncated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,1,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[((2,4)+,4,4)]
Nonuniform omnisnub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[[4,4,4]]+

Tridental graphs

[3,41,1] family

There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
83 alternated square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
-- Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t0.svg
(4.4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
84 cantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.svg
(4.8.8)
Cantic square tiling honeycomb verf.png
85 runcic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t0.svg
(4.4.4.4)
Runcic square tiling honeycomb verf.png
86 runcicantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t012.png
(3.4.4.4)
Uniform tiling 44-t12.svg
(4.8.8)
Runcicantic square tiling honeycomb verf.png
[63] rectified square (risquah)
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(4.4.4)
- Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Rectified square tiling honeycomb verf.png H3 443 boundary 0100.png
[64] rectified order-4 octahedral (rocth)
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t1.png
(3.4.3.4)
Uniform tiling 44-t1.png
(4.4.4.4)
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
[65] order-4 octahedral (octh)
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 344 CC center.png
[67] truncated order-4 octahedral (tocth)
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t12.png
(4.6.6)
Uniform tiling 44-t1.png
(4.4.4.4)
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
[68] bitruncated square (osquah)
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(3.8.8)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Bitruncated square tiling honeycomb verf.png H3 443-0110.png
[70] cantellated order-4 octahedral (srocth)
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t02.png

(4.4.4.4)
Cantellated order-4 octahedral honeycomb verf.png H3 443-0101.png
[73] cantitruncated order-4 octahedral (grocth)
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform tiling 44-t012.png
(4.8.8)
Cantitruncated order-4 octahedral honeycomb verf.png H3 443-0111.png
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,41,1}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png--CDel nodes.pngCDel split2-44.pngCDel node h1.pngirr. {}v{4}
Nonuniform snub rectified order-4 octahedral
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,41,1}
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[4,41,1] family

There are 7 forms, (all shared with [4,4,4] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png

#Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
[62] Square (squah)
( CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
- Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t0.svg H3 443 FC boundary.png
[62] Square (squah)
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t0.svg
(4.4.4.4)
- Uniform tiling 44-t0.svg
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t0.svg H3 443 FC boundary.png
[63] rectified square (risquah)
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Rectified square tiling honeycomb verf.png H3 443 boundary 0100.png
[66] truncated square (tisquah)
( CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t012.png
(4.8.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t012.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Truncated square tiling honeycomb verf.png H3 444-0111.png
[77] order-4 square (sisquah)
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square (tissish)
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t12.svg
(4.8.8)
Uniform tiling 44-t1.png
(4.4.4.4)
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square (dish)
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
- Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
[77] order-4 square (sisquah)
( CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png-CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png-CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square (tissish)
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png) = (CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png )
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel nodes 11.pngCDel 2.pngCDel node h1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel nodes 11.pngCDel split2-44.pngCDel node.png Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[83] Alternated square
CDel nodes.pngCDel split2-44.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png-CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel nodes.pngCDel split2-44.pngCDel node h1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
Scaliform Snub order-4 square
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png-CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel nodes.pngCDel split2-44.pngCDel node h.png
NonuniformCDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png-CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png
NonuniformCDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png-CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel nodes hh.pngCDel split2-44.pngCDel node h.png
[153]( CDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png )
= ( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel 2a2b-cross.pngCDel nodes 10.png )
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel nodes hh.pngCDel 2x.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png
Nonuniform Snub square
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel 2x.pngCDel node h.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel split2-44.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,31,1] family

There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ring permutations of the Coxeter group: [6,31,1] or CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
87 alternated order-6 cubic (ahach)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
--()
Uniform tiling 63-t2.png
(3.3.3.3.3)
()
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
88 cantic order-6 cubic (tachach)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Truncated tetrahedron.png
(3.6.6)
Cantic order-6 cubic honeycomb verf.png
89 runcic order-6 cubic (birachach)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.svg
(6.6.6)
-(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Tetrahedron.png
(3.3.3)
Runcic order-6 cubic honeycomb verf.png
90 runcicantic order-6 cubic (bitachach)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
-(2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Truncated tetrahedron.png
(3.6.6)
Runcicantic order-6 cubic honeycomb verf.png
[16] order-4 hexagonal (shexah)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.svg
(6.6.6)
-(4)
Uniform tiling 63-t0.svg
(6.6.6)
- Order-4 hexagonal tiling honeycomb verf.png CDel nodes.pngCDel split2.pngCDel node 1.png
(3.3.3.3)
H3 634 FC boundary.png
[17] rectified order-4 hexagonal (rishexah)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
Rectified order-4 hexagonal tiling honeycomb verf.png H3 634 boundary 0100.png
[18] rectified order-6 cubic (rihach)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
-(1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
(6)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Rectified order-6 cubic honeycomb verf.png H3 436 CC center 0100.png
[20] truncated order-4 hexagonal (tishexah)
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
-(2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-1100.png
[21] bitruncated order-6 cubic (chexah)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t12.svg
(6.6.6)
-(1)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[24] cantellated order-6 cubic (srihach)
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-0101.png
[27] cantitruncated order-6 cubic (grihach)
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0111.png
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
Alt
[141] alternated order-4 hexagonal (ashexah)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
Nonuniform bisnub order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png
Nonuniform snub rectified order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Cyclic graphs

[(4,4,3,3)] family

There are 11 forms, 4 unique to this family, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png, with CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png.

#Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
91 tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
-(6)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.svg
(444)
(8)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
(12)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
92 cyclotruncated square-tetrahedral
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
Bitruncated 4433 honeycomb verf.png
93 cyclotruncated tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
(1)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.svg
(444)
(4)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
Tritruncated 4433 honeycomb verf.png
94 truncated tetrahedral-square
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
(1)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
(1)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
Bicantitruncated 4433 honeycomb verf.png
[64](CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
rectified order-4 octahedral (rocth)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
[65]( CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
order-4 octahedral (octh)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
-CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.svg
(3333)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
Uniform tiling 44-t0.svg CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
[67](CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
truncated order-4 octahedral (tocth)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
[83] alternated square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(4444)
-CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
Uniform polyhedron-33-t02.png
(4.3.4.3)
[84] cantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
Cantic square tiling honeycomb verf.png
[85] runcic square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(3434)
CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.svg
(3333)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
Runcic square tiling honeycomb verf.png
[86] runcicantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(466)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
Runcicantic square tiling honeycomb verf.png
#Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png--CDel nodes.pngCDel split2-44.pngCDel node h1.pngirr. {}v{4}
NonuniformCDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel nodes hh.pngCDel split2.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
155 alternated tetrahedral-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png r{4,3}

[(4,4,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
95 cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
-(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(12)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
96 octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 10l.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
(4.4.4.4)
97 cyclotruncated cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.png
(4)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
(4)
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t12 4443 honeycomb verf.png
98 cyclotruncated square-cubic
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform t01 4443 honeycomb verf.png
99 cyclotruncated octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 11.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform t23 4443 honeycomb verf.png
100 rectified cubic-square
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform t02 4443 honeycomb verf.png
101 truncated cubic-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(2)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t012 4443 honeycomb verf.png
102 truncated octahedral-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 11.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t123 4443 honeycomb verf.png
103 omnitruncated octahedral-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t0123 4443 honeycomb verf.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
156 alternated cubic-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-43.pngCDel node.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
- Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t1.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Nonuniform snub octahedral-square
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-43.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform cyclosnub square-cubic
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.png
Uniform polyhedron-33-t0.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch hh.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.svg
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Nonuniform omnisnub cubic-square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)

[(4,4,4,4)] family

There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.pngCDel label4.png. Repeat constructions are related as: CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png, CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png, and CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.pngCDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
104 quarter order-4 square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Paracompact honeycomb 4444 1100 verf.png
[62] square (squah)
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Square tiling honeycomb verf.png H3 443 FC boundary.png
[77] order-4 square (sisquah)
(CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
H3 444 FC boundary.png
[78] truncated order-4 square (tissish)
( CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square (dish)
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
[83] alternated square
(CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png) = CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
[77] alternated order-4 square (sisquah)
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
-
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
158 cantic order-4 square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel branchu 10.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png

CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.pngCDel label4.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform snub order-4 square
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform bisnub order-4 square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)
Alternated bitruncated order-4 square tiling honeycomb vertex figure.png

[(6,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
105 tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
-(4)
Uniform tiling 63-t0.svg
(6.6.6)
(6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-33-t02.png CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.png
(3.4.3.4)
106 tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png

Uniform polyhedron-33-t1.svg
(3.3.3.3)

Uniform polyhedron-33-t0.png
(3.3.3)
-
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
107 cyclotruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png
(3)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(3)
Uniform tiling 63-t12.svg
(6.6.6)
Uniform t12 6333 honeycomb verf.png
108 cyclotruncated hexagonal-tetrahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform tiling 63-t01.png
(3.12.12)
(4)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6333 honeycomb verf.png
109 cyclotruncated tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform t23 6333 honeycomb verf.png
110 rectified tetrahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6333 honeycomb verf.png
111 truncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6333 honeycomb verf.png
112 truncated tetrahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.svg
(6.6.6)
Uniform t123 6333 honeycomb verf.png
113 omnitruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6333 honeycomb verf.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub tetrahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Snub 6333 honeycomb verf.png

[(6,3,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
114 octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(6)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
-(8)
Uniform tiling 63-t0.svg
(6.6.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png
Hyperbolic honeycomb 6343 t0 verf.png
115 cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
()
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
()
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
-()
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
116 cyclotruncated octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(3)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t0.svg
(6.6.6)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb.png
(3)
Uniform tiling 63-t12.svg
(6.6.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea 1.png
Uniform t12 6343 honeycomb verf.png
117 cyclotruncated hexagonal-octahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodeb 1.pngCDel 3b.pngCDel branch.pngCDel label4.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb 1.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
Uniform t01 6343 honeycomb verf.png
118 cyclotruncated cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodea.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
Uniform t23 6343 honeycomb verf.png
119 rectified octahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 01r.pngCDel 3a.pngCDel nodea 1.png
Uniform t02 6343 honeycomb verf.png
120 truncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
Uniform t012 6343 honeycomb verf.png
121 truncated cubic-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t12.svg
(6.6.6)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
Uniform t123 6343 honeycomb verf.png
122 omnitruncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodeb 1.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
Uniform t0123 6343 honeycomb verf.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform cyclosnub octahedral-hexagonal
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
CDel nodea h.pngCDel 3a.pngCDel branch h0.pngCDel label4.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel nodeb.pngCDel 3b.pngCDel branch h0l.pngCDel label4.png
Uniform tiling 333-t1.svg
(3.3.3.3.3.3)
CDel label6.pngCDel branch h0r.pngCDel 3b.pngCDel nodeb.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch h0.pngCDel 3a.pngCDel nodea h.png
Trigonal antiprism.png
irr. {3,4}
Cyclosnub cubic-hexagonal honeycomb vertex figure.png
Nonuniform omnisnub octahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel nodea h.pngCDel 3a.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel nodeb h.pngCDel 3b.pngCDel branch hh.pngCDel label4.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3b.pngCDel nodeb h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3a.pngCDel nodea h.png
Tetrahedron.png
irr. {3,3}
Snub 6343 honeycomb verf.png

[(6,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
123 icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(6)
Icosahedron.png
(3.3.3.3.3)
-(8)
Uniform tiling 63-t0.svg
(6.6.6)
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-53-t02.png
3.4.5.4
124 dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(30)
Icosidodecahedron.png
(3.5.3.5)
(20)
Dodecahedron.png
(5.5.5)
-(12)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png
(3.4.6.4)
125 cyclotruncated icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(3)
Truncated icosahedron.png
(5.6.6)
(1)
Dodecahedron.png
(5.5.5)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(3)
Uniform tiling 63-t12.svg
(6.6.6)
Uniform t12 6353 honeycomb verf.png
126 cyclotruncated hexagonal-icosahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(1)
Icosahedron.png
(3.3.3.3.3)
(1)
Icosahedron.png
(3.3.3.3.3)
(5)
Uniform tiling 63-t01.png
(3.12.12)
(5)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6353 honeycomb verf.png
127 cyclotruncated dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(6)
Truncated dodecahedron.png
(3.10.10)
(6)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform t23 6353 honeycomb verf.png
128 rectified icosahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6353 honeycomb verf.png
129 truncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Truncated icosahedron.png
(5.6.6)
(1)
Small rhombicosidodecahedron.png
(3.5.5.5)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6353 honeycomb verf.png
130 truncated dodecahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(2)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.svg
(6.6.6)
Uniform t123 6353 honeycomb verf.png
131 omnitruncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6353 honeycomb verf.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub icosahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png
Snub dodecahedron cw.png
(3.3.3.3.5)
Snub dodecahedron cw.png
(3.3.3.3.5)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Snub 6353 honeycomb verf.png

[(6,3,6,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
132 hexagonal-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label6.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- Uniform tiling 63-t0.svg
(6.6.6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 63-t02.png
(3.4.6.4)
133 cyclotruncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(3)
Uniform tiling 63-t01.png
(3.12.12)
(3)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6363 honeycomb verf.png
134 cyclotruncated triangular-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6363 honeycomb verf.png
135 rectified hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t12.svg
(6.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6363 honeycomb verf.png
136 truncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6363 honeycomb verf.png
[16] order-4 hexagonal tiling (shexah)
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
=CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 63-t12.svg
(6.6.6)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(3)
Uniform tiling 63-t12.svg
(6.6.6)
Uniform t12 6363 honeycomb verf.png
(3.3.3.3)
H3 634 FC boundary.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
[141] alternated order-4 hexagonal (ashexah)
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t1.svg
+(3.3.3.3)
Uniform polyhedron-33-t012.png
(4.6.6)
Nonuniform cyclocantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 10l.png
Nonuniform cycloruncicantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 11.png
Nonuniform snub rectified hexagonal-triangular
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
+(3.3.3)
Snub 6363 honeycomb verf.png

Loop-n-tail graphs

[3,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3[3]] or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [3,3,6]: CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
137 alternated hexagonal (ahexah)
(CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
-- Uniform polyhedron-33-t2.png
(3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
138 cantic hexagonal (tahexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
-(2)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic hexagonal tiling honeycomb verf.png
139 runcic hexagonal (birahexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic hexagonal tiling honeycomb verf.png
140 runcicantic hexagonal (bitahexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic hexagonal tiling honeycomb verf.png
[2] rectified hexagonal (rihexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
-(1)
Uniform polyhedron-33-t2.png
(3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
H3 633 boundary 0100.png
[3] rectified order-6 tetrahedral (rath)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
-(2)
Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 tetrahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism
H3 336 CC center 0100.png
[4] order-6 tetrahedral (thon)
CDel branch.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-33-t0.png
(4.4.4)
-(4)
Uniform polyhedron-33-t0.png
(4.4.4)
- Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png H3 336 CC center.png
[8] cantellated order-6 tetrahedral (srath)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-3 hexagonal tiling honeycomb verf.png H3 633-0101.png
[9] bitruncated order-6 tetrahedral (tehexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
-(1)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0110.png
[10] truncated order-6 tetrahedral (tath)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(2)
Uniform polyhedron-33-t01.png
(3.10.10)
-(2)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 tetrahedral honeycomb verf.png H3 633-0011.png
[14] cantitruncated order-6 tetrahedral (grath)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0111.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-6 tetrahedral
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 333-snub.svg
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)
Alternated cantitruncated order-6 tetrahedral honeycomb vertex figure.png

[4,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3[3]] or CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [4,3,6]: CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
141 alternated order-4 hexagonal (ashexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
-- Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
142 cantic order-4 hexagonal (tashexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
-(2)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-4 hexagonal tiling honeycomb verf.png
143 runcic order-4 hexagonal (birashexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-4 hexagonal tiling honeycomb verf.png
144 runcicantic order-4 hexagonal (bitashexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-4 hexagonal tiling honeycomb verf.png
[16] order-4 hexagonal (shexah)
CDel branch.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(4)
Uniform polyhedron-43-t0.png
(4.4.4)
-(4)
Uniform polyhedron-43-t0.png
(4.4.4)
- Order-4 hexagonal tiling honeycomb verf.png H3 634 FC boundary.png
[17] rectified order-4 hexagonal (rishexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
-(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-4 hexagonal tiling honeycomb verf.png H3 634 boundary 0100.png
[18] rectified order-6 cubic (rihach)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
-(2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 cubic honeycomb verf.png H3 436 CC center 0100.png
[21] bitruncated order-4 hexagonal (chexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
-(1)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[22] truncated order-6 cubic (thach)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(2)
Uniform polyhedron-43-t01.png
(3.8.8)
-(2)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 cubic honeycomb verf.png H3 634-0011.png
[23] cantellated order-4 hexagonal (srishexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-4 hexagonal tiling honeycomb verf.png H3 634-1010.png
[26] cantitruncated order-4 hexagonal (grishexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1110.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-4 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 333-snub.svg
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[5,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3[3]] or CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [5,3,6]: CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
145 alternated order-5 hexagonal (aphexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
-- Uniform polyhedron-53-t2.png
(3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t1.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.3.6)
146 cantic order-5 hexagonal (taphexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
-(2)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-5 hexagonal tiling honeycomb verf.png
147 runcic order-5 hexagonal (biraphexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-5 hexagonal tiling honeycomb verf.png
148 runcicantic order-5 hexagonal (bitaphexah)
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-5 hexagonal tiling honeycomb verf.png
[32] rectified order-5 hexagonal (riphexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
-(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-5 hexagonal tiling honeycomb verf.png H3 635 boundary 0100.png
[33] rectified order-6 dodecahedral (rihed)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
-(2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 dodecahedral honeycomb verf.png H3 536 CC center 0100.png
[34] Order-5 hexagonal (hedhon)
CDel branch.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(4)
Uniform polyhedron-53-t0.png
(5.5.5)
-(4)
Uniform polyhedron-53-t0.png
(5.5.5)
- Order-5 hexagonal tiling honeycomb verf.png H3 635 FC boundary.png
[40] truncated order-6 dodecahedral (thed)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(2)
Uniform polyhedron-53-t01.png
(3.10.10)
-(2)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 dodecahedral honeycomb verf.png H3 635-1100.png
[36] cantellated order-5 hexagonal (sriphexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-5 hexagonal tiling honeycomb verf.png H3 635-0101.png
[39] bitruncated order-5 hexagonal (dohexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
-(1)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0110.png
[41] cantitruncated order-5 hexagonal (griphexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0111.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-5 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform tiling 333-snub.svg
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3[3]] or CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png. 7 are half symmetry forms of [6,3,6]: CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
149 runcic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.svg
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-6 hexagonal tiling honeycomb verf.png
150 runcicantic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-6 hexagonal tiling honeycomb verf.png
[1] hexagonal (hexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)
Uniform tiling 63-t12.svg
(6.6.6)
-(1)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png H3 633 FC boundary.png
[46] order-6 hexagonal (hihexah)
CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.svg
(6.6.6)
-(4)
Uniform tiling 63-t0.svg
(6.6.6)
- Uniform tiling 333-t0.png H3 636 FC boundary.png
[47] rectified order-6 hexagonal (rihihexah)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[47] rectified order-6 hexagonal (rihihexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
-(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[48] truncated order-6 hexagonal (thihexah)
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
-(2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Truncated order-6 hexagonal tiling honeycomb verf.png H3 636-1100.png
[49] cantellated order-6 hexagonal (srihihexah)
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-6 hexagonal tiling honeycomb verf.png H3 636-1010.png
[51] cantitruncated order-6 hexagonal (grihihexah)
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1110.png
[54] triangular tiling honeycomb (trah)
( CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
-- Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t12.svg CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[55] cantic order-6 hexagonal (ritrah)
( CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-6 hexagonal tiling honeycomb verf.png H3 363 boundary 0100.png
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
[54] triangular tiling honeycomb (trah)
( CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t1.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t012.png Uniform tiling 63-t12.svg CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[137] alternated hexagonal (ahexah)
( CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png ) = ( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png )
Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
- Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 333-snub.svg
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-t12.png
+(3.6.6)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[47] rectified order-6 hexagonal (rihihexah)
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
- Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[55] cantic order-6 hexagonal (ritrah)
( CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png ) = ( CDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
-(2)
Uniform tiling 63-t12.svg
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified triangular tiling honeycomb verf.png H3 363 boundary 0100.png
Nonuniform snub rectified order-6 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 333-snub.svg
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Multicyclic graphs

[3[ ]×[ ]] family

There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png. Two are duplicated as CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png, two as CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png, and three as CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
151 Quarter order-4 hexagonal (quishexah)
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t02.png
Paracompact honeycomb DP3 1100 verf.png
[17] rectified order-4 hexagonal (rishexah)
CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.svg
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.svg
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
Rectified order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
H3 634 boundary 0100.png
[18] rectified order-6 cubic (rihach)
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t2.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
Rectified order-6 cubic honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 436 CC center 0100.png
[21] bitruncated order-6 cubic (chexah)
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[87] alternated order-6 cubic (ahach)
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
-CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
Uniform tiling 333-t01.png CDel branch 11.pngCDel split2.pngCDel node.png
(3.6.3.6)
[88] cantic order-6 cubic (tachach)
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
Cantic order-6 cubic honeycomb verf.png
[141] alternated order-4 hexagonal (ashexah)
CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
-CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.svg
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t1.png
Uniform polyhedron-33-t012.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142] cantic order-4 hexagonal (tashexah)
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t01.png
Cantic order-4 hexagonal tiling honeycomb verf.png
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
Alt
Nonuniform bisnub order-6 cubic
CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 333-snub.svg
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 333-snub.svg
CDel node h.pngCDel split1.pngCDel branch hh.png
Tetrahedron.png
irr. {3,3}
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png

[3[3,3]] family

There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: CDel branch.pngCDel splitcross.pngCDel branch.png. They are repeated in four families: CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png (index 2 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png (index 4 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png (index 6 subgroup), and CDel branch c1.pngCDel splitcross.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png (index 24 subgroup).

#Name
Coxeter diagram
0123 vertex figure Picture
[1] hexagonal (hexah)
CDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
H3 633 FC boundary.png
[47] rectified order-6 hexagonal (rihihexah)
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
t{2,3}
H3 636 boundary 0100.png
[54] triangular tiling honeycomb (trah)
( CDel branch.pngCDel splitcross.pngCDel branch 10l.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
- Uniform tiling 333-t1.png
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t2.png
CDel node.pngCDel split1.pngCDel branch 01ld.png
Uniform tiling 333-t012.png CDel node 1.pngCDel split1.pngCDel branch 11.png
t{3[3]}
H3 363 FC boundary.png
[55] rectified triangular (ritrah)
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Rectified triangular tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
t{2,3}
H3 363 boundary 0100.png
#Name
Coxeter diagram
0123Alt vertex figure Picture
[137] alternated hexagonal (ahexah)
( CDel branch hh.pngCDel splitcross.pngCDel branch hh.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png ) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-snub.svg
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.svg
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.svg
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.svg
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(4.6.6)

Summary enumerations by family

Linear graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs

[4,4,3]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,4,1+,4,3+](6)CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png | CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
[4,4,3]+(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png

[4,4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node c4.png
3CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png[1+,4,1+,4,1+,4,1+](3)CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node h0.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3)CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png[1+,4,1+,4,1+,4,1+](3)CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.png
3CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png[2+[(4,4+,4,2+)]](2)CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]+(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

[6,3,3]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[6,3,3]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,6,(3,3)+](2)CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
[6,3,3]+(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png

[6,3,4]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png
15CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
[1+,6,3+,4,1+](6)CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png | CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
[6,3,4]+(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png

[6,3,5]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[6,3,5]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 5.pngCDel node c4.png
15CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
[1+,6,(3,5)+](2)CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
[6,3,5]+(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png

[3,6,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c3.pngCDel 3.pngCDel node c4.png
5CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png[2+[3+,6,3+]](1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[2+[3,6,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c1.png
3CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png[2+[3,6,3]]+(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png

[6,3,6]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node c4.png
6CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
[1+,6,3+,6,1+](2)CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node h0.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png[2+[(6,3+,6,2+)]](2)CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c1.png
2CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
[2+[6,3,6]]+(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png

Tridental graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs

[6,31,1]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
[6,31,1]4CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
[1[6,31,1]]=[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7)CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png[1[1+,6,31,1]]+(2)CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png (↔ CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
[1[6,31,1]]+=[6,3,4]+(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png

[3,41,1]
CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[3,41,1]4CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png[3+,41,1]+(2)CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes h0l.pngCDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes h0l.png
[1[3,41,1]]=[3,4,4]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7)CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png[1[3+,41,1]]+(2)CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[1[3,41,1]]+(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png

[41,1,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[41,1,1]0(none)
[1[41,1,1]]=[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(4)CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png[1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)](4)CDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]=[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c1.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3)CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png[3[1+,41,1,1]]+=[1+,4,1+,4,3+](2)CDel node.pngCDel 4.pngCDel node h1.pngCDel split1-44.pngCDel nodes.png (↔ CDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]+=[4,4,3]+(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png

Cyclic graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs

[(4,4,4,3)]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png
[(4,4,4,3)]6CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 01r.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 11.png[(4,1+,4,1+,4,3+)](2)CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.png
3CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 11.png | CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.png[2+[(4,4+,4,3+)]](2)CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]+(1)CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.png

[4[4]]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[4[4]](none)
[2+[4[4]]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.pngCDel label4.png
1CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.pngCDel label4.png[2+[(4+,4)[2]]](1)CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[1[4[4]]]=[4,41,1]
CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png
(2)CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2-44.pngCDel node.png[(1+,4)[4]](2)CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png
[2[4[4]]]=[4,4,4]
CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(1)CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png[2+[(1+,4,4)[2]]](1)CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.png
[(2+,4)[4[4]]]=[2+[4,4,4]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.png = CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png
(1)CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.pngCDel label4.png[(2+,4)[4[4]]]+
= [2+[4,4,4]]+
(1)CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.pngCDel label4.png

[(6,3,3,3)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(6,3,3,3)]6CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
[2+[(6,3,3,3)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
3CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png[2+[(6,3,3,3)]]+(1)CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png

[(3,4,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4,3,6)]6CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png[(3+,4,3+,6)](1)CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
[2+[(3,4,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
3CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png[2+[(3,4,3,6)]]+(1)CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png

[(3,5,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5,3,6)]6CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
[2+[(3,5,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png
3CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png[2+[(3,5,3,6)]]+(1)CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png

[(3,6)[2]]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[(3,6)[2]]2CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label6.png
1CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label6.png
1CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-0.pngCDel 3ab.pngCDel branch c1-0.pngCDel label6.png = CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png[2+[(3+,6)[2]]](1)CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.png
[(2,2)+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label6.png
1CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png[(2,2)+[(3,6)[2]]]+(1)CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Paracompact hyperbolic enumeration
Group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs

[(3,3,4,4)]
CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png
[(3,3,4,4)]4CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
[1[(4,4,3,3)]]=[3,41,1]
CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png
(7)CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png | CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png[1[(3,3,4,1+,4)]]+
= [3+,41,1]+
(2)CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png (= CDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png)
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
[1[(3,3,4,4)]]+
= [3,41,1]+
(1)CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png

[3[ ]x[ ]]
CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
[3[ ]x[ ]]1CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[6,31,1]
CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
(2)CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[4,3[3]]
CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
(2)CDel node 1.pngCDel split1.pngCDel branch 10l.pngCDel split2.pngCDel node 1.png
[2[3[ ]x[ ]]]=[6,3,4]
CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(3)CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.png[2[3[ ]x[ ]]]+
=[6,3,4]+
(1)CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png

[3[3,3]]
CDel branch.pngCDel splitcross.pngCDel branch.png
CDel node.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png
[3[3,3]]0(none)
[1[3[3,3]]]=[6,3[3]]
CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
0(none)
[3[3[3,3]]]=[3,6,3]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(2)CDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png
[2[3[3,3]]]=[6,3,6]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png
(1)CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node 1.png
[(3,3)[3[3,3]]]=[6,3,3]
CDel branch c1.pngCDel splitcross.pngCDel branch c1.png = CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)CDel branch 11.pngCDel splitcross.pngCDel branch 11.png[(3,3)[3[3,3]]]+
= [6,3,3]+
(1)CDel branch hh.pngCDel splitcross.pngCDel branch hh.png

Loop-n-tail graphs

Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.

Paracompact hyperbolic enumeration
Group Extended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs

[3,3[3]]
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
[3,3[3]]4CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[3,3[3]]]=[3,3,6]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7)CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png[1[3,3[3]]]+
= [3,3,6]+
(1)CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[4,3[3]]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
[4,3[3]]4CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[4,3[3]]]=[4,3,6]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7)CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png[1+,4,(3[3])+](2)CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[4,3[3]]+(1)CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[5,3[3]]
CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png
[5,3[3]]4CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[5,3[3]]]=[5,3,6]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7)CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png[1[5,3[3]]]+
= [5,3,6]+
(1)CDel node h.pngCDel 5.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[6,3[3]]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
[6,3[3]]2CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[6,3[3]] =(2)(CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png)
[(3,3)[1+,6,3[3]]]=[6,3,3]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel split1.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch c1.pngCDel splitcross.pngCDel branch c1.png
(1)CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png[(3,3)[1+,6,3[3]]]+(1)CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[1[6,3[3]]]=[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(6)CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png[3[1+,6,3[3]]]+
= [3,6,3]+
(1)CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png (= CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png )
[1[6,3[3]]]+
= [6,3,6]+
(1)CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing a Coxeter group or sometimes a uniform polytope or uniform tiling constructed from the group.

<span class="mw-page-title-main">Uniform 8-polytope</span> Polytope contained by 7-polytope facets

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

<span class="mw-page-title-main">Uniform 7-polytope</span> Polytope

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

<span class="mw-page-title-main">Uniform 9-polytope</span> Type of geometric object

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Regular 4-polytope</span> Four-dimensional analogues of the regular polyhedra in three dimensions

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

<span class="mw-page-title-main">Goursat tetrahedron</span>

In geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere.

<span class="mw-page-title-main">Hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 cubic honeycomb</span>

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.

<span class="mw-page-title-main">Order-5 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Triangular tiling honeycomb</span>

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

<span class="mw-page-title-main">Square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.

<span class="mw-page-title-main">Order-4 square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.

<span class="mw-page-title-main">Order-4 octahedral honeycomb</span>

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.

In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.

References