Order-4 hexagonal tiling honeycomb | |
---|---|
Perspective projection view within Poincaré disk model | |
Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
Schläfli symbols | {6,3,4} {6,31,1} t0,1{(3,6)2} |
Coxeter diagrams | ↔ ↔ ↔ |
Cells | {6,3} |
Faces | hexagon {6} |
Edge figure | square {4} |
Vertex figure | octahedron |
Dual | Order-6 cubic honeycomb |
Coxeter groups | , [4,3,6] , [6,31,1] , [(6,3)[2]] |
Properties | Regular, quasiregular |
In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.
Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.
The Schläfli symbol of the order-4 hexagonal tiling honeycomb is {6,3,4}. Since that of the hexagonal tiling is {6,3}, this honeycomb has four such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the octahedron is {3,4}, the vertex figure of this honeycomb is an octahedron. Thus, eight hexagonal tilings meet at each vertex of this honeycomb, and the six edges meeting at each vertex lie along three orthogonal axes. [1]
Perspective projection | One cell, viewed from outside the Poincare sphere |
The vertices of a t{(3,∞,3)}, tiling exist as a 2-hypercycle within this honeycomb | The honeycomb is analogous to the H2 order-4 apeirogonal tiling, {∞,4}, shown here with one green apeirogon outlined by its horocycle |
The order-4 hexagonal tiling honeycomb has three reflective simplex symmetry constructions.
The half-symmetry uniform construction {6,31,1} has two types (colors) of hexagonal tilings, with Coxeter diagram ↔ . A quarter-symmetry construction also exists, with four colors of hexagonal tilings: .
An additional two reflective symmetries exist with non-simplectic fundamental domains: [6,3*,4], which is index 6, with Coxeter diagram ; and [6,(3,4)*], which is index 48. The latter has a cubic fundamental domain, and an octahedral Coxeter diagram with three axial infinite branches: . It can be seen as using eight colors to color the hexagonal tilings of the honeycomb.
The order-4 hexagonal tiling honeycomb contains , which tile 2-hypercycle surfaces and are similar to the truncated infinite-order triangular tiling, :
The order-4 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.
11 paracompact regular honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {4,4,3} | {4,4,4} | ||||||
{3,3,6} | {4,3,6} | {5,3,6} | {3,6,3} | {3,4,4} |
There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including this regular form, and its dual, the order-6 cubic honeycomb.
[6,3,4] family honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{6,3,4} | r{6,3,4} | t{6,3,4} | rr{6,3,4} | t0,3{6,3,4} | tr{6,3,4} | t0,1,3{6,3,4} | t0,1,2,3{6,3,4} | ||||
{4,3,6} | r{4,3,6} | t{4,3,6} | rr{4,3,6} | 2t{4,3,6} | tr{4,3,6} | t0,1,3{4,3,6} | t0,1,2,3{4,3,6} |
The order-4 hexagonal tiling honeycomb has a related alternated honeycomb, ↔ , with triangular tiling and octahedron cells.
It is a part of sequence of regular honeycombs of the form {6,3,p}, all of which are composed of hexagonal tiling cells:
{6,3,p} honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | H3 | ||||||||||
Form | Paracompact | Noncompact | |||||||||
Name | {6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {6,3,7} | {6,3,8} | ... {6,3,∞} | ||||
Coxeter | |||||||||||
Image | |||||||||||
Vertex figure {3,p} | {3,3} | {3,4} | {3,5} | {3,6} | {3,7} | {3,8} | {3,∞} |
This honeycomb is also related to the 16-cell, cubic honeycomb and order-4 dodecahedral honeycomb, all of which have octahedral vertex figures.
{p,3,4} regular honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | S3 | E3 | H3 | ||||||||
Form | Finite | Affine | Compact | Paracompact | Noncompact | ||||||
Name | {3,3,4} | {4,3,4} | {5,3,4} | {6,3,4} | {7,3,4} | {8,3,4} | ... {∞,3,4} | ||||
Image | |||||||||||
Cells | {3,3} | {4,3} | {5,3} | {6,3} | {7,3} | {8,3} | {∞,3} |
The aforementioned honeycombs are also quasiregular:
Regular and Quasiregular honeycombs: {p,3,4} and {p,31,1} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Euclidean 4-space | Euclidean 3-space | Hyperbolic 3-space | ||||||||
Name | {3,3,4} {3,31,1} = | {4,3,4} {4,31,1} = | {5,3,4} {5,31,1} = | {6,3,4} {6,31,1} = | |||||||
Coxeter diagram | = | = | = | = | |||||||
Image | |||||||||||
Cells {p,3} | | | | |
Rectified order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | r{6,3,4} or t1{6,3,4} |
Coxeter diagrams | ↔ ↔ ↔ |
Cells | {3,4} r{6,3} |
Faces | triangle {3} hexagon {6} |
Vertex figure | square prism |
Coxeter groups | , [4,3,6] , [4,3[3]] , [6,31,1] , [3[]×[]] |
Properties | Vertex-transitive, edge-transitive |
The rectified order-4 hexagonal tiling honeycomb, t1{6,3,4}, has octahedral and trihexagonal tiling facets, with a square prism vertex figure.
It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{∞,4}, which alternates apeirogonal and square faces:
Truncated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t{6,3,4} or t0,1{6,3,4} |
Coxeter diagram | ↔ |
Cells | {3,4} t{6,3} |
Faces | triangle {3} dodecagon {12} |
Vertex figure | square pyramid |
Coxeter groups | , [4,3,6] , [6,31,1] |
Properties | Vertex-transitive |
The truncated order-4 hexagonal tiling honeycomb, t0,1{6,3,4}, has octahedron and truncated hexagonal tiling facets, with a square pyramid vertex figure.
It is similar to the 2D hyperbolic truncated order-4 apeirogonal tiling, t{∞,4}, with apeirogonal and square faces:
Bitruncated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | 2t{6,3,4} or t1,2{6,3,4} |
Coxeter diagram | ↔ ↔ ↔ |
Cells | t{4,3} t{3,6} |
Faces | square {4} hexagon {6} |
Vertex figure | digonal disphenoid |
Coxeter groups | , [4,3,6] , [4,3[3]] , [6,31,1] , [3[]×[]] |
Properties | Vertex-transitive |
The bitruncated order-4 hexagonal tiling honeycomb, t1,2{6,3,4}, has truncated octahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.
Cantellated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | rr{6,3,4} or t0,2{6,3,4} |
Coxeter diagram | ↔ |
Cells | r{3,4} {}x{4} rr{6,3} |
Faces | triangle {3} square {4} hexagon {6} |
Vertex figure | wedge |
Coxeter groups | , [4,3,6] , [6,31,1] |
Properties | Vertex-transitive |
The cantellated order-4 hexagonal tiling honeycomb, t0,2{6,3,4}, has cuboctahedron, cube, and rhombitrihexagonal tiling cells, with a wedge vertex figure.
Cantitruncated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | tr{6,3,4} or t0,1,2{6,3,4} |
Coxeter diagram | ↔ |
Cells | t{3,4} {}x{4} tr{6,3} |
Faces | square {4} hexagon {6} dodecagon {12} |
Vertex figure | mirrored sphenoid |
Coxeter groups | , [4,3,6] , [6,31,1] |
Properties | Vertex-transitive |
The cantitruncated order-4 hexagonal tiling honeycomb, t0,1,2{6,3,4}, has truncated octahedron, cube, and truncated trihexagonal tiling cells, with a mirrored sphenoid vertex figure.
Runcinated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,3{6,3,4} |
Coxeter diagram | ↔ |
Cells | {4,3} {}x{4} {6,3} {}x{6} |
Faces | square {4} hexagon {6} |
Vertex figure | irregular triangular antiprism |
Coxeter groups | , [4,3,6] |
Properties | Vertex-transitive |
The runcinated order-4 hexagonal tiling honeycomb, t0,3{6,3,4}, has cube, hexagonal tiling and hexagonal prism cells, with an irregular triangular antiprism vertex figure.
It contains the 2D hyperbolic rhombitetrahexagonal tiling, rr{4,6}, with square and hexagonal faces. The tiling also has a half symmetry construction .
= |
---|
Runcitruncated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,3{6,3,4} |
Coxeter diagram | |
Cells | rr{3,4} {}x{4} {}x{12} t{6,3} |
Faces | triangle {3} square {4} dodecagon {12} |
Vertex figure | isosceles-trapezoidal pyramid |
Coxeter groups | , [4,3,6] |
Properties | Vertex-transitive |
The runcitruncated order-4 hexagonal tiling honeycomb, t0,1,3{6,3,4}, has rhombicuboctahedron, cube, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
The runcicantellated order-4 hexagonal tiling honeycomb is the same as the runcitruncated order-6 cubic honeycomb.
Omnitruncated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,2,3{6,3,4} |
Coxeter diagram | |
Cells | tr{4,3} tr{6,3} {}x{12} {}x{8} |
Faces | square {4} hexagon {6} octagon {8} dodecagon {12} |
Vertex figure | irregular tetrahedron |
Coxeter groups | , [4,3,6] |
Properties | Vertex-transitive |
The omnitruncated order-4 hexagonal tiling honeycomb, t0,1,2,3{6,3,4}, has truncated cuboctahedron, truncated trihexagonal tiling, dodecagonal prism, and octagonal prism cells, with an irregular tetrahedron vertex figure.
Alternated order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb Semiregular honeycomb |
Schläfli symbols | h{6,3,4} |
Coxeter diagrams | ↔ |
Cells | {3[3]} {3,4} |
Faces | triangle {3} |
Vertex figure | truncated octahedron |
Coxeter groups | , [4,3[3]] |
Properties | Vertex-transitive, edge-transitive, quasiregular |
The alternated order-4 hexagonal tiling honeycomb, ↔ , is composed of triangular tiling and octahedron cells, in a truncated octahedron vertex figure.
Cantic order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | h2{6,3,4} |
Coxeter diagrams | ↔ |
Cells | h2{6,3} t{3,4} r{3,4} |
Faces | triangle {3} square {4} hexagon {6} |
Vertex figure | wedge |
Coxeter groups | , [4,3[3]] |
Properties | Vertex-transitive |
The cantic order-4 hexagonal tiling honeycomb, ↔ , is composed of trihexagonal tiling, truncated octahedron, and cuboctahedron cells, with a wedge vertex figure.
Runcic order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | h3{6,3,4} |
Coxeter diagrams | ↔ |
Cells | {3[3]} rr{3,4} {4,3} {}x{3} |
Faces | triangle {3} square {4} |
Vertex figure | triangular cupola |
Coxeter groups | , [4,3[3]] |
Properties | Vertex-transitive |
The runcic order-4 hexagonal tiling honeycomb, ↔ , is composed of triangular tiling, rhombicuboctahedron, cube, and triangular prism cells, with a triangular cupola vertex figure.
Runcicantic order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | h2,3{6,3,4} |
Coxeter diagrams | ↔ |
Cells | h2{6,3} tr{3,4} t{4,3} {}x{3} |
Faces | triangle {3} square {4} hexagon {6} octagon {8} |
Vertex figure | rectangular pyramid |
Coxeter groups | , [4,3[3]] |
Properties | Vertex-transitive |
The runcicantic order-4 hexagonal tiling honeycomb, ↔ , is composed of trihexagonal tiling, truncated cuboctahedron, truncated cube, and triangular prism cells, with a rectangular pyramid vertex figure.
Quarter order-4 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | q{6,3,4} |
Coxeter diagram | ↔ |
Cells | {3[3]} {3,3} t{3,3} h2{6,3} |
Faces | triangle {3} hexagon {6} |
Vertex figure | triangular cupola |
Coxeter groups | , [3[]x[]] |
Properties | Vertex-transitive |
The quarter order-4 hexagonal tiling honeycomb, q{6,3,4}, or , is composed of triangular tiling, trihexagonal tiling, tetrahedron, and truncated tetrahedron cells, with a triangular cupola vertex figure.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.
In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.
The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.
The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.
In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.
In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.
The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.
In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.