Order-3-4 heptagonal honeycomb

Last updated
Order-3-4 heptagonal honeycomb
Type Regular honeycomb
Schläfli symbol {7,3,4}
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel nodes.png
Cells {7,3} Heptagonal tiling.svg
Faces heptagon {7}
Vertex figure octahedron {3,4}
Dual {4,3,7}
Coxeter group [7,3,4]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-4 heptagonal honeycomb or 7,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Contents

Geometry

The Schläfli symbol of the order-3-4 heptagonal honeycomb is {7,3,4}, with four heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.

Hyperbolic honeycomb 7-3-4 poincare vc.png
Poincaré disk model
(vertex centered)
Order-3-4 heptagonal honeycomb cell.png
One hyperideal cell limits to a circle on the ideal surface
H3 734 UHS plane at infinity.png
Ideal surface

It is a part of a series of regular polytopes and honeycombs with {p,3,4} Schläfli symbol, and octahedral vertex figures:

{p,3,4} regular honeycombs
Space S3 E3 H3
FormFiniteAffineCompactParacompactNoncompact
Name {3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
{4,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
CDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 11.png
{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
{6,3,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes 11.png
{7,3,4}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel nodes.png
{8,3,4}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.pngCDel uaub.pngCDel nodes 11.png
... {,3,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.pngCDel uaub.pngCDel nodes 11.png
Image Stereographic polytope 16cell.png Cubic honeycomb.png H3 534 CC center.png H3 634 FC boundary.png Hyperbolic honeycomb 7-3-4 poincare.png Hyperbolic honeycomb 8-3-4 poincare.png Hyperbolic honeycomb i-3-4 poincare.png
Cells Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.svg
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Heptagonal tiling.svg
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2-8-3-dual.svg
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
H2-I-3-dual.svg
{,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

Order-3-4 octagonal honeycomb

Order-3-4 octagonal honeycomb
Type Regular honeycomb
Schläfli symbol {8,3,4}
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel 8.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel label4.pngCDel uaub.pngCDel nodes 11.png
Cells {8,3} H2-8-3-dual.svg
Faces octagon {8}
Vertex figure octahedron {3,4}
Dual {4,3,8}
Coxeter group [8,3,4]
[8,31,1]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-4 octagonal honeycomb or 8,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-3-4 octagonal honeycomb is {8,3,4}, with four octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.

Hyperbolic honeycomb 8-3-4 poincare vc.png
Poincaré disk model
(vertex centered)

Order-3-4 apeirogonal honeycomb

Order-3-4 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,3,4}
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel infin.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.pngCDel uaub.pngCDel nodes.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.pngCDel uaub.pngCDel nodes 11.png
Cells {∞,3} H2-I-3-dual.svg
Faces apeirogon {∞}
Vertex figure octahedron {3,4}
Dual {4,3,∞}
Coxeter group [∞,3,4]
[∞,31,1]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-3-4 apeirogonal honeycomb or ∞,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-3 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-3-4 apeirogonal honeycomb is {∞,3,4}, with four order-3 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.

Hyperbolic honeycomb i-3-4 poincare vc.png
Poincaré disk model
(vertex centered)
H3 i34 UHS plane at infinity.png
Ideal surface

See also

Related Research Articles

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb is a regular space-filling tessellation.

<span class="mw-page-title-main">Order-3-7 hexagonal honeycomb</span>

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or a regular space-filling tessellation with Schläfli symbol {6,3,7}.

In the geometry of hyperbolic 3-space, the heptagonal tiling honeycomb or 7,3,3 honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation. With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All vertices are ultra-ideal with infinitely many cubes existing around each vertex in an order-7 triangular tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-3-5 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-6 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation with Schläfli symbol {7,3,7}.

In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edge. All vertices are ultra-ideal with infinitely many octahedra existing around each vertex in an order-5 square tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,5,4}.

In the geometry of hyperbolic 3-space, the order-6-4 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,6,4}.

In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation. Each infinite cell is an order-4 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-5-3 square honeycomb or 4,5,3 honeycomb a regular space-filling tessellation. Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,5,4}.

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,7,3}.

In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation. Each infinite cell consists of a hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,6,4}.

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,8,3}.

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,∞,3}.

References