Order-5 hexagonal tiling honeycomb | |
---|---|
Perspective projection view from center of Poincaré disk model | |
Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
Schläfli symbol | {6,3,5} |
Coxeter-Dynkin diagrams | ↔ |
Cells | {6,3} |
Faces | hexagon {6} |
Edge figure | pentagon {5} |
Vertex figure | icosahedron |
Dual | Order-6 dodecahedral honeycomb |
Coxeter group | , [5,3,6] |
Properties | Regular |
In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The Schläfli symbol of the order-5 hexagonal tiling honeycomb is {6,3,5}. Since that of the hexagonal tiling is {6,3}, this honeycomb has five such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the icosahedron is {3,5}, the vertex figure of this honeycomb is an icosahedron. Thus, 20 hexagonal tilings meet at each vertex of this honeycomb. [1]
A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.
Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.
A lower-symmetry construction of index 120, [6,(3,5)*], exists with regular dodecahedral fundamental domains, and an icosahedral Coxeter-Dynkin diagram with 6 axial infinite-order (ultraparallel) branches.
The order-5 hexagonal tiling honeycomb is similar to the 2D hyperbolic regular paracompact order-5 apeirogonal tiling, {∞,5}, with five apeirogonal faces meeting around every vertex.
The order-5 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.
11 paracompact regular honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {4,4,3} | {4,4,4} | ||||||
{3,3,6} | {4,3,6} | {5,3,6} | {3,6,3} | {3,4,4} |
There are 15 uniform honeycombs in the [6,3,5] Coxeter group family, including this regular form, and its regular dual, the order-6 dodecahedral honeycomb.
{6,3,5} | r{6,3,5} | t{6,3,5} | rr{6,3,5} | t0,3{6,3,5} | tr{6,3,5} | t0,1,3{6,3,5} | t0,1,2,3{6,3,5} |
---|---|---|---|---|---|---|---|
{5,3,6} | r{5,3,6} | t{5,3,6} | rr{5,3,6} | 2t{5,3,6} | tr{5,3,6} | t0,1,3{5,3,6} | t0,1,2,3{5,3,6} |
The order-5 hexagonal tiling honeycomb has a related alternation honeycomb, represented by ↔ , with icosahedron and triangular tiling cells.
It is a part of sequence of regular hyperbolic honeycombs of the form {6,3,p}, with hexagonal tiling facets:
{6,3,p} honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | H3 | ||||||||||
Form | Paracompact | Noncompact | |||||||||
Name | {6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {6,3,7} | {6,3,8} | ... {6,3,∞} | ||||
Coxeter | |||||||||||
Image | |||||||||||
Vertex figure {3,p} | {3,3} | {3,4} | {3,5} | {3,6} | {3,7} | {3,8} | {3,∞} |
It is also part of a sequence of regular polychora and honeycombs with icosahedral vertex figures:
{p,3,5} polytopes | |||||||
---|---|---|---|---|---|---|---|
Space | S3 | H3 | |||||
Form | Finite | Compact | Paracompact | Noncompact | |||
Name | {3,3,5} | {4,3,5} | {5,3,5} | {6,3,5} | {7,3,5} | {8,3,5} | ... {∞,3,5} |
Image | |||||||
Cells | {3,3} | {4,3} | {5,3} | {6,3} | {7,3} | {8,3} | {∞,3} |
Rectified order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | r{6,3,5} or t1{6,3,5} |
Coxeter diagrams | ↔ |
Cells | {3,5} r{6,3} or h2{6,3} |
Faces | triangle {3} hexagon {6} |
Vertex figure | pentagonal prism |
Coxeter groups | , [5,3,6] , [5,3[3]] |
Properties | Vertex-transitive, edge-transitive |
The rectified order-5 hexagonal tiling honeycomb, t1{6,3,5}, has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure.
It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.
Space | S3 | H3 | ||||
---|---|---|---|---|---|---|
Form | Finite | Compact | Paracompact | Noncompact | ||
Name | r{3,3,5} | r{4,3,5} | r{5,3,5} | r{6,3,5} | r{7,3,5} | ... r{∞,3,5} |
Image | ||||||
Cells {3,5} | r{3,3} | r{4,3} | r{5,3} | r{6,3} | r{7,3} | r{∞,3} |
Truncated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t{6,3,5} or t0,1{6,3,5} |
Coxeter diagram | |
Cells | {3,5} t{6,3} |
Faces | triangle {3} dodecagon {12} |
Vertex figure | pentagonal pyramid |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The truncated order-5 hexagonal tiling honeycomb, t0,1{6,3,5}, has icosahedron and truncated hexagonal tiling facets, with a pentagonal pyramid vertex figure.
Bitruncated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | 2t{6,3,5} or t1,2{6,3,5} |
Coxeter diagram | ↔ |
Cells | t{3,6} t{3,5} |
Faces | pentagon {5} hexagon {6} |
Vertex figure | digonal disphenoid |
Coxeter groups | , [5,3,6] , [5,3[3]] |
Properties | Vertex-transitive |
The bitruncated order-5 hexagonal tiling honeycomb, t1,2{6,3,5}, has hexagonal tiling and truncated icosahedron facets, with a digonal disphenoid vertex figure.
Cantellated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | rr{6,3,5} or t0,2{6,3,5} |
Coxeter diagram | |
Cells | r{3,5} rr{6,3} {}x{5} |
Faces | triangle {3} square {4} pentagon {5} hexagon {6} |
Vertex figure | wedge |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The cantellated order-5 hexagonal tiling honeycomb, t0,2{6,3,5}, has icosidodecahedron, rhombitrihexagonal tiling, and pentagonal prism facets, with a wedge vertex figure.
Cantitruncated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | tr{6,3,5} or t0,1,2{6,3,5} |
Coxeter diagram | |
Cells | t{3,5} tr{6,3} {}x{5} |
Faces | square {4} pentagon {5} hexagon {6} dodecagon {12} |
Vertex figure | mirrored sphenoid |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The cantitruncated order-5 hexagonal tiling honeycomb, t0,1,2{6,3,5}, has truncated icosahedron, truncated trihexagonal tiling, and pentagonal prism facets, with a mirrored sphenoid vertex figure.
Runcinated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,3{6,3,5} |
Coxeter diagram | |
Cells | {6,3} {5,3} {}x{6} {}x{5} |
Faces | square {4} pentagon {5} hexagon {6} |
Vertex figure | irregular triangular antiprism |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The runcinated order-5 hexagonal tiling honeycomb, t0,3{6,3,5}, has dodecahedron, hexagonal tiling, pentagonal prism, and hexagonal prism facets, with an irregular triangular antiprism vertex figure.
Runcitruncated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,3{6,3,5} |
Coxeter diagram | |
Cells | t{6,3} rr{5,3} {}x{5} {}x{12} |
Faces | triangle {3} square {4} pentagon {5} dodecagon {12} |
Vertex figure | isosceles-trapezoidal pyramid |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The runcitruncated order-5 hexagonal tiling honeycomb, t0,1,3{6,3,5}, has truncated hexagonal tiling, rhombicosidodecahedron, pentagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.
The runcicantellated order-5 hexagonal tiling honeycomb is the same as the runcitruncated order-6 dodecahedral honeycomb.
Omnitruncated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,2,3{6,3,5} |
Coxeter diagram | |
Cells | tr{6,3} tr{5,3} {}x{10} {}x{12} |
Faces | square {4} hexagon {6} decagon {10} dodecagon {12} |
Vertex figure | irregular tetrahedron |
Coxeter groups | , [5,3,6] |
Properties | Vertex-transitive |
The omnitruncated order-5 hexagonal tiling honeycomb, t0,1,2,3{6,3,5}, has truncated trihexagonal tiling, truncated icosidodecahedron, decagonal prism, and dodecagonal prism facets, with an irregular tetrahedral vertex figure.
Alternated order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb Semiregular honeycomb |
Schläfli symbol | h{6,3,5} |
Coxeter diagram | ↔ |
Cells | {3[3]} {3,5} |
Faces | triangle {3} |
Vertex figure | truncated icosahedron |
Coxeter groups | , [5,3[3]] |
Properties | Vertex-transitive, edge-transitive, quasiregular |
The alternated order-5 hexagonal tiling honeycomb, h{6,3,5}, ↔ , has triangular tiling and icosahedron facets, with a truncated icosahedron vertex figure. It is a quasiregular honeycomb.
Cantic order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | h2{6,3,5} |
Coxeter diagram | ↔ |
Cells | h2{6,3} t{3,5} r{5,3} |
Faces | triangle {3} pentagon {5} hexagon {6} |
Vertex figure | triangular prism |
Coxeter groups | , [5,3[3]] |
Properties | Vertex-transitive |
The cantic order-5 hexagonal tiling honeycomb, h2{6,3,5}, ↔ , has trihexagonal tiling, truncated icosahedron, and icosidodecahedron facets, with a triangular prism vertex figure.
Runcic order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | h3{6,3,5} |
Coxeter diagram | ↔ |
Cells | {3[3]} rr{5,3} {5,3} {}x{3} |
Faces | triangle {3} square {4} pentagon {5} |
Vertex figure | triangular cupola |
Coxeter groups | , [5,3[3]] |
Properties | Vertex-transitive |
The runcic order-5 hexagonal tiling honeycomb, h3{6,3,5}, ↔ , has triangular tiling, rhombicosidodecahedron, dodecahedron, and triangular prism facets, with a triangular cupola vertex figure.
Runcicantic order-5 hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | h2,3{6,3,5} |
Coxeter diagram | ↔ |
Cells | h2{6,3} tr{5,3} t{5,3} {}x{3} |
Faces | triangle {3} square {4} hexagon {6} decagon {10} |
Vertex figure | rectangular pyramid |
Coxeter groups | , [5,3[3]] |
Properties | Vertex-transitive |
The runcicantic order-5 hexagonal tiling honeycomb, h2,3{6,3,5}, ↔ , has trihexagonal tiling, truncated icosidodecahedron, truncated dodecahedron, and triangular prism facets, with a rectangular pyramid vertex figure.
In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.
In hyperbolic geometry, the order-5 dodecahedral honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {5,3,5}, it has five dodecahedral cells around each edge, and each vertex is surrounded by twenty dodecahedra. Its vertex figure is an icosahedron.
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.
In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.
The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.
In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.
The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.
In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.
In the geometry of hyperbolic 3-space, the dodecahedral-icosahedral honeycomb is a uniform honeycomb, constructed from dodecahedron, icosahedron, and icosidodecahedron cells, in a rhombicosidodecahedron vertex figure.