Hexagonal tiling honeycomb | |
---|---|
Perspective projection view within Poincaré disk model | |
Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
Schläfli symbols | {6,3,3} t{3,6,3} 2t{6,3,6} 2t{6,3[3]} t{3[3,3]} |
Coxeter diagrams | ↔ ↔ ↔ ↔ |
Cells | {6,3} |
Faces | hexagon {6} |
Edge figure | triangle {3} |
Vertex figure | tetrahedron {3,3} |
Dual | Order-6 tetrahedral honeycomb |
Coxeter groups | , [3,3,6] , [3,6,3] , [6,3,6] , [6,3[3]] , [3[3,3]] |
Properties | Regular |
In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.
The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of this honeycomb, six hexagons meet at each vertex, and four edges meet at each vertex. [1]
Viewed in perspective outside of a Poincaré disk model, the image above shows one hexagonal tiling cell within the honeycomb, and its mid-radius horosphere (the horosphere incident with edge midpoints). In this projection, the hexagons grow infinitely small towards the infinite boundary, asymptoting towards a single ideal point. It can be seen as similar to the order-3 apeirogonal tiling, {∞,3} of H2, with horocycles circumscribing vertices of apeirogonal faces.
{6,3,3} | {∞,3} |
---|---|
One hexagonal tiling cell of the hexagonal tiling honeycomb | An order-3 apeirogonal tiling with a green apeirogon and its horocycle |
It has a total of five reflectional constructions from five related Coxeter groups all with four mirrors and only the first being regular: [6,3,3], [3,6,3], [6,3,6], [6,3[3]] and [3[3,3]] , having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are , , , and , representing different types (colors) of hexagonal tilings in the Wythoff construction.
The hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.
11 paracompact regular honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {4,4,3} | {4,4,4} | ||||||
{3,3,6} | {4,3,6} | {5,3,6} | {3,6,3} | {3,4,4} |
It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual, the order-6 tetrahedral honeycomb.
[6,3,3] family honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
{6,3,3} | r{6,3,3} | t{6,3,3} | rr{6,3,3} | t0,3{6,3,3} | tr{6,3,3} | t0,1,3{6,3,3} | t0,1,2,3{6,3,3} | ||||
{3,3,6} | r{3,3,6} | t{3,3,6} | rr{3,3,6} | 2t{3,3,6} | tr{3,3,6} | t0,1,3{3,3,6} | t0,1,2,3{3,3,6} |
It is part of a sequence of regular polychora, which include the 5-cell {3,3,3}, tesseract {4,3,3}, and 120-cell {5,3,3} of Euclidean 4-space, along with other hyperbolic honeycombs containing tetrahedral vertex figures.
{p,3,3} honeycombs | ||||||||
---|---|---|---|---|---|---|---|---|
Space | S3 | H3 | ||||||
Form | Finite | Paracompact | Noncompact | |||||
Name | {3,3,3} | {4,3,3} | {5,3,3} | {6,3,3} | {7,3,3} | {8,3,3} | ... {∞,3,3} | |
Image | ||||||||
Coxeter diagrams | 1 | |||||||
4 | ||||||||
6 | ||||||||
12 | ||||||||
24 | ||||||||
Cells {p,3} | {3,3} | {4,3} | {5,3} | {6,3} | {7,3} | {8,3} | {∞,3} |
It is also part of a sequence of regular honeycombs of the form {6,3,p}, which are each composed of hexagonal tiling cells:
{6,3,p} honeycombs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | H3 | ||||||||||
Form | Paracompact | Noncompact | |||||||||
Name | {6,3,3} | {6,3,4} | {6,3,5} | {6,3,6} | {6,3,7} | {6,3,8} | ... {6,3,∞} | ||||
Coxeter | |||||||||||
Image | |||||||||||
Vertex figure {3,p} | {3,3} | {3,4} | {3,5} | {3,6} | {3,7} | {3,8} | {3,∞} |
Rectified hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbols | r{6,3,3} or t1{6,3,3} |
Coxeter diagrams | ↔ |
Cells | {3,3} r{6,3} or |
Faces | triangle {3} hexagon {6} |
Vertex figure | triangular prism |
Coxeter groups | , [3,3,6] , [3,3[3]] |
Properties | Vertex-transitive, edge-transitive |
The rectified hexagonal tiling honeycomb, t1{6,3,3}, has tetrahedral and trihexagonal tiling facets, with a triangular prism vertex figure. The half-symmetry construction alternates two types of tetrahedra.
Hexagonal tiling honeycomb | Rectified hexagonal tiling honeycomb or |
---|---|
Related H2 tilings | |
Order-3 apeirogonal tiling | Triapeirogonal tiling or |
Truncated hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t{6,3,3} or t0,1{6,3,3} |
Coxeter diagram | |
Cells | {3,3} t{6,3} |
Faces | triangle {3} dodecagon {12} |
Vertex figure | triangular pyramid |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The truncated hexagonal tiling honeycomb, t0,1{6,3,3}, has tetrahedral and truncated hexagonal tiling facets, with a triangular pyramid vertex figure.
It is similar to the 2D hyperbolic truncated order-3 apeirogonal tiling, t{∞,3} with apeirogonal and triangle faces:
Bitruncated hexagonal tiling honeycomb Bitruncated order-6 tetrahedral honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | 2t{6,3,3} or t1,2{6,3,3} |
Coxeter diagram | ↔ |
Cells | t{3,3} t{3,6} |
Faces | triangle {3} hexagon {6} |
Vertex figure | digonal disphenoid |
Coxeter groups | , [3,3,6] , [3,3[3]] |
Properties | Vertex-transitive |
The bitruncated hexagonal tiling honeycomb or bitruncated order-6 tetrahedral honeycomb, t1,2{6,3,3}, has truncated tetrahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.
Cantellated hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | rr{6,3,3} or t0,2{6,3,3} |
Coxeter diagram | |
Cells | r{3,3} rr{6,3} {}×{3} |
Faces | triangle {3} square {4} hexagon {6} |
Vertex figure | wedge |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The cantellated hexagonal tiling honeycomb, t0,2{6,3,3}, has octahedron, rhombitrihexagonal tiling, and triangular prism cells, with a wedge vertex figure.
Cantitruncated hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | tr{6,3,3} or t0,1,2{6,3,3} |
Coxeter diagram | |
Cells | t{3,3} tr{6,3} {}×{3} |
Faces | triangle {3} square {4} hexagon {6} dodecagon {12} |
Vertex figure | mirrored sphenoid |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The cantitruncated hexagonal tiling honeycomb, t0,1,2{6,3,3}, has truncated tetrahedron, truncated trihexagonal tiling, and triangular prism cells, with a mirrored sphenoid vertex figure.
Runcinated hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,3{6,3,3} |
Coxeter diagram | |
Cells | {3,3} {6,3} {}×{6} {}×{3} |
Faces | triangle {3} square {4} hexagon {6} |
Vertex figure | irregular triangular antiprism |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The runcinated hexagonal tiling honeycomb, t0,3{6,3,3}, has tetrahedron, hexagonal tiling, hexagonal prism, and triangular prism cells, with an irregular triangular antiprism vertex figure.
Runcitruncated hexagonal tiling honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,3{6,3,3} |
Coxeter diagram | |
Cells | rr{3,3} {}x{3} {}x{12} t{6,3} |
Faces | triangle {3} square {4} dodecagon {12} |
Vertex figure | isosceles-trapezoidal pyramid |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The runcitruncated hexagonal tiling honeycomb, t0,1,3{6,3,3}, has cuboctahedron, triangular prism, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
Runcicantellated hexagonal tiling honeycomb runcitruncated order-6 tetrahedral honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,2,3{6,3,3} |
Coxeter diagram | |
Cells | t{3,3} {}x{6} rr{6,3} |
Faces | triangle {3} square {4} hexagon {6} |
Vertex figure | isosceles-trapezoidal pyramid |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t0,2,3{6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
Omnitruncated hexagonal tiling honeycomb Omnitruncated order-6 tetrahedral honeycomb | |
---|---|
Type | Paracompact uniform honeycomb |
Schläfli symbol | t0,1,2,3{6,3,3} |
Coxeter diagram | |
Cells | tr{3,3} {}x{6} {}x{12} tr{6,3} |
Faces | square {4} hexagon {6} dodecagon {12} |
Vertex figure | irregular tetrahedron |
Coxeter groups | , [3,3,6] |
Properties | Vertex-transitive |
The omnitruncated hexagonal tiling honeycomb or omnitruncated order-6 tetrahedral honeycomb, t0,1,2,3{6,3,3}, has truncated octahedron, hexagonal prism, dodecagonal prism, and truncated trihexagonal tiling cells, with an irregular tetrahedron vertex figure.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.
In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.
In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.
In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.
The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.
In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.
In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.
In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.
The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.
In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.
In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or a regular space-filling tessellation with Schläfli symbol {6,3,7}.
In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.
In the geometry of hyperbolic 3-space, the tetrahedral-square tiling honeycomb is a paracompact uniform honeycomb, constructed from tetrahedron, cuboctahedron and square tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.