Heptagonal tiling honeycomb

Last updated
Heptagonal tiling honeycomb
Type Regular honeycomb
Schläfli symbol {7,3,3}
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cells {7,3} Heptagonal tiling.svg
Faces Heptagon {7}
Vertex figure tetrahedron {3,3}
Dual {3,3,7}
Coxeter group [7,3,3]
PropertiesRegular

In the geometry of hyperbolic 3-space, the heptagonal tiling honeycomb or 7,3,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Contents

Geometry

The Schläfli symbol of the heptagonal tiling honeycomb is {7,3,3}, with three heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is a tetrahedron, {3,3}.

Hyperbolic honeycomb 7-3-3 poincare vc.png
Poincaré disk model
(vertex centered)
7-3-3 Hyperbolic Honeycomb Rotating.gif
Rotating
H3 733 UHS plane at infinity.png
Ideal surface

It is a part of a series of regular polytopes and honeycombs with {p,3,3} Schläfli symbol, and tetrahedral vertex figures:

{p,3,3} honeycombs
Space S3 H3
FormFiniteParacompactNoncompact
Name {3,3,3} {4,3,3} {5,3,3} {6,3,3} {7,3,3} {8,3,3} ... {,3,3}
Image Stereographic polytope 5cell.png Stereographic polytope 8cell.png Stereographic polytope 120cell faces.png H3 633 FC boundary.png Hyperbolic honeycomb 7-3-3 poincare.png Hyperbolic honeycomb 8-3-3 poincare.png Hyperbolic honeycomb i-3-3 poincare.png
Coxeter diagrams
Coxeter subgroup tree 33p-direct.png
1CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
6CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
12CDel nodes 11.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.pngCDel infin.pngCDel node.png
24CDel nodes 11.pngCDel 2.pngCDel nodes 11.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png Cdel tet4 1111.png Cdel tetinfin 1111.png
Cells
{p,3}
CDel node 1.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel nodes 11.pngCDel 2.pngCDel node 1.png
Dodecahedron.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.svg
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel branch 11.pngCDel split2.pngCDel node 1.png
Heptagonal tiling.svg
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2-8-3-dual.svg
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
H2-I-3-dual.svg
{,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png

It is a part of a series of regular honeycombs, {7,3,p}.

{7,3,3} {7,3,4} {7,3,5} {7,3,6} {7,3,7} {7,3,8} ...{7,3,∞}
Hyperbolic honeycomb 7-3-3 poincare vc.png Hyperbolic honeycomb 7-3-4 poincare vc.png Hyperbolic honeycomb 7-3-5 poincare vc.png Hyperbolic honeycomb 7-3-6 poincare.png Hyperbolic honeycomb 7-3-7 poincare.png Hyperbolic honeycomb 7-3-8 poincare.png Hyperbolic honeycomb 7-3-i poincare.png

It is a part of a series of regular honeycombs, with {7,p,3}.

{7,3,3} {7,4,3} {7,5,3}...
Hyperbolic honeycomb 7-3-3 poincare vc.png Hyperbolic honeycomb 7-4-3 poincare vc.png Hyperbolic honeycomb 7-5-3 poincare vc.png

Octagonal tiling honeycomb

Octagonal tiling honeycomb
Type Regular honeycomb
Schläfli symbol {8,3,3}
t{8,4,3}
2t{4,8,4}
t{4[3,3]}
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel branch 11.pngCDel split2-44.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel label4.png (all 4s)
Cells {8,3} H2-8-3-dual.svg
Faces Octagon {8}
Vertex figure tetrahedron {3,3}
Dual {3,3,8}
Coxeter group [8,3,3]
PropertiesRegular

In the geometry of hyperbolic 3-space, the octagonal tiling honeycomb or 8,3,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the octagonal tiling honeycomb is {8,3,3}, with three octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an tetrahedron, {3,3}.

Hyperbolic honeycomb 8-3-3 poincare vc.png
Poincaré disk model (vertex centered)
Hyperbolic subgroup tree 338-direct.png
Direct subgroups of [8,3,3]

Apeirogonal tiling honeycomb

Apeirogonal tiling honeycomb
Type Regular honeycomb
Schläfli symbol {∞,3,3}
t{∞,3,3}
2t{∞,∞,∞}
t{∞[3,3]}
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel labelinfin.png (all ∞)
Cells {∞,3} H2-I-3-dual.svg
Faces Apeirogon {∞}
Vertex figure tetrahedron {3,3}
Dual {3,3,∞}
Coxeter group [∞,3,3]
PropertiesRegular

In the geometry of hyperbolic 3-space, the apeirogonal tiling honeycomb or ∞,3,3 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,3,3}, with three apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an tetrahedron, {3,3}.

The "ideal surface" projection below is a plane-at-infinity, in the Poincare half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.

Hyperbolic honeycomb i-3-3 poincare vc.png
Poincaré disk model (vertex centered)
H3 i33 UHS plane at infinity.png
Ideal surface

See also

Related Research Articles

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb a regular space-filling tessellation.

<span class="mw-page-title-main">Order-3-7 hexagonal honeycomb</span>

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or a regular space-filling tessellation with Schläfli symbol {6,3,7}.

In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation. With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All vertices are ultra-ideal with infinitely many cubes existing around each vertex in an order-7 triangular tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-3-4 heptagonal honeycomb or 7,3,4 honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-5 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-6 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation with Schläfli symbol {7,3,7}.

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,5,4}.

In the geometry of hyperbolic 3-space, the order-6-4 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,6,4}.

In the geometry of hyperbolic 3-space, the order-4-5 square honeycomb is a regular space-filling tessellation with Schläfli symbol {4,4,5}. It has five square tiling {4,4} around each edge. All vertices are ultra-ideal with infinitely many square tiling existing around each vertex in an order-5 square tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation. Each infinite cell is an order-4 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-5-3 square honeycomb or 4,5,3 honeycomb a regular space-filling tessellation. Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,5,4}.

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,7,3}.

In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation. Each infinite cell consists of a hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,6,4}.

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,8,3}.

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,∞,3}.

References