Alternated hexagonal tiling honeycomb

Last updated
Alternated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbols h{6,3,3}
s{3,6,3}
2s{6,3,6}
2s{6,3[3]}
s{3[3,3]}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
CDel branch hh.pngCDel splitcross.pngCDel branch hh.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h0.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h0.png
Cells {3,3} Uniform polyhedron-33-t0.png
{3[3]} Uniform tiling 333-t0.png
Faces triangle {3}
Vertex figure Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
truncated tetrahedron
Coxeter groups , [3,3[3]]
1/2 , [6,3,3]
1/2 , [3,6,3]
1/2 , [6,3,6]
1/2 , [6,3[3]]
1/2 , [3[3,3]]
PropertiesVertex-transitive, edge-transitive, quasiregular

In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png or CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png, is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.

Contents

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry constructions

Subgroup relations Hyperbolic subgroup tree 336-direct.png
Subgroup relations

It has five alternated constructions from reflectional Coxeter groups all with four mirrors and only the first being regular: CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png [6,3,3], CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png [3,6,3], CDel node.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3,6], CDel branch c1.pngCDel split2.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3[3]] and [3[3,3]] CDel branch c1.pngCDel splitcross.pngCDel branch c1.png, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png, CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.png and CDel branch hh.pngCDel splitcross.pngCDel branch hh.png, representing different types (colors) of hexagonal tilings in the Wythoff construction.

The alternated hexagonal tiling honeycomb has 3 related forms: the cantic hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png; the runcic hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png; and the runcicantic hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Cantic hexagonal tiling honeycomb

Cantic hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h2{6,3,3}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells r{3,3} Uniform polyhedron-33-t1.png
t{3,3} Uniform polyhedron-33-t01.png
h2{6,3} Uniform tiling 333-t01.png
Faces triangle {3}
hexagon {6}
Vertex figure Cantic hexagonal tiling honeycomb verf.png
wedge
Coxeter groups , [3,3[3]]
PropertiesVertex-transitive

The cantic hexagonal tiling honeycomb, h2{6,3,3}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png or CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png, is composed of octahedron, truncated tetrahedron, and trihexagonal tiling facets, with a wedge vertex figure.

Runcic hexagonal tiling honeycomb

Runcic hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h3{6,3,3}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells {3,3} Uniform polyhedron-33-t0.png
{}x{3} Triangular prism.png
rr{3,3} Uniform polyhedron-33-t02.png
{3[3]} Uniform tiling 333-t0.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcic hexagonal tiling honeycomb verf.png
triangular cupola
Coxeter groups , [3,3[3]]
PropertiesVertex-transitive

The runcic hexagonal tiling honeycomb, h3{6,3,3}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png or CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png, has tetrahedron, triangular prism, cuboctahedron, and triangular tiling facets, with a triangular cupola vertex figure.

Runcicantic hexagonal tiling honeycomb

Runcicantic hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h2,3{6,3,3}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells t{3,3} Uniform polyhedron-33-t01.png
{}x{3} Triangular prism.png
tr{3,3} Uniform polyhedron-33-t012.png
h2{6,3} Uniform tiling 333-t01.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcicantic hexagonal tiling honeycomb verf.png
rectangular pyramid
Coxeter groups , [3,3[3]]
PropertiesVertex-transitive

The runcicantic hexagonal tiling honeycomb, h2,3{6,3,3}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png or CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has truncated tetrahedron, triangular prism, truncated octahedron, and trihexagonal tiling facets, with a rectangular pyramid vertex figure.

See also

Related Research Articles

Cubic honeycomb

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space, made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway calls this honeycomb a cubille.

Tetrahedral-octahedral honeycomb Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

Order-5 cubic honeycomb

The order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

In geometry, a quasiregular polyhedron is a uniform polyhedron which has exactly two kinds of regular faces, which alternate around each vertex. They are edge-transitive, and hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive. Their dual figures are also sometimes considered quasiregular, except that they are edge-transitive, are face-transitive, and alternate between two regular vertex figures.

Uniform honeycombs in hyperbolic space uniform tessellation of uniform polyhedral cells

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

Hexagonal tiling honeycomb

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Order-6 tetrahedral honeycomb

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

Order-4 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Order-6 cubic honeycomb

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.

Order-6 dodecahedral honeycomb

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.

Order-5 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere, a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Order-6 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

Triangular tiling honeycomb

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

Square tiling honeycomb

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.

Order-4 square tiling honeycomb

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.

Order-4 octahedral honeycomb

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.

In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

In the geometry of hyperbolic 3-space, the tetrahedral-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, tetrahedron, and octahedron cells, in an icosidodecahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

References