Octahedral-hexagonal tiling honeycomb

Last updated
Octahedron-hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol {(3,4,3,6)} or {(6,3,4,3)}
Coxeter diagrams CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png or CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
CDel K6 634 11.png
Cells {3,4} Uniform polyhedron-43-t2.svg
{6,3} Uniform tiling 63-t0.svg
r{6,3} Uniform tiling 63-t1.svg
Faces triangular {3}
square {4}
hexagon {6}
Vertex figure Hyperbolic honeycomb 6343 t0 verf.png
rhombicuboctahedron
Coxeter group [(6,3,4,3)]
PropertiesVertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png, and is named by its two regular cells.

Contents

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower symmetry form, index 6, of this honeycomb can be constructed with [(6,3,4,3*)] symmetry, represented by a trigonal trapezohedron fundamental domain, and a Coxeter diagram CDel K6 634 10.png .

Cyclotruncated octahedral-hexagonal tiling honeycomb

Cyclotruncated octahedral-hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol ct{(3,4,3,6)} or ct{(3,6,3,4)}
Coxeter diagrams CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png or CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 01l.pngCDel label4.png
CDel K6 634 11.png
Cells {6,3} Uniform polyhedron-63-t0.png Uniform polyhedron-63-t12.png
{4,3} Uniform polyhedron-43-t0.svg
t{3,4} Uniform polyhedron-43-t12.png
Faces triangular {3}
square {4}
hexagon {6}
Vertex figure Uniform t12 6343 honeycomb verf.png
triangular antiprism
Coxeter group [(6,3,4,3)]
PropertiesVertex-transitive

The cyclotruncated octahedral-hexagonal tiling honeycomb is a compact uniform honeycomb, constructed from hexagonal tiling, cube, and truncated octahedron cells, in a triangular antiprism vertex figure. It has a Coxeter diagram CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png.

Symmetry

A radial subgroup symmetry, index 6, of this honeycomb can be constructed with [(4,3,6,3*)], represented by a trigonal trapezohedron fundamental domain, and Coxeter diagram CDel K6 634 11.png .

See also

References