7-simplex honeycomb

Last updated
7-simplex honeycomb
(No image)
Type Uniform 7-honeycomb
Family Simplectic honeycomb
Schläfli symbol {3[8]} = 0[8]
Coxeter diagram CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
6-face types {36} 7-simplex t0.svg , t1{36} 7-simplex t1.svg
t2{36} 7-simplex t2.svg , t3{36} 7-simplex t3.svg
6-face types {35} 6-simplex t0.svg , t1{35} 6-simplex t1.svg
t2{35} 6-simplex t2.svg
5-face types {34} 5-simplex t0.svg , t1{34} 5-simplex t1.svg
t2{34} 5-simplex t2.svg
4-face types {33} 4-simplex t0.svg , t1{33} 4-simplex t1.svg
Cell types {3,3} 3-simplex t0.svg , t1{3,3} 3-simplex t1.svg
Face types {3} 2-simplex t0.svg
Vertex figure t0,6{36} 7-simplex t06.svg
Symmetry ×21, <[3[8]]>
Properties vertex-transitive

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

Contents

A7 lattice

This vertex arrangement is called the A7 lattice or 7-simplex lattice. The 56 vertices of the expanded 7-simplex vertex figure represent the 56 roots of the Coxeter group. [1] It is the 7-dimensional case of a simplectic honeycomb. Around each vertex figure are 254 facets: 8+8 7-simplex, 28+28 rectified 7-simplex, 56+56 birectified 7-simplex, 70 trirectified 7-simplex, with the count distribution from the 9th row of Pascal's triangle.

contains as a subgroup of index 144. [2] Both and can be seen as affine extensions from from different nodes: Affine A7 E7 relations.png

The A2
7
lattice can be constructed as the union of two A7 lattices, and is identical to the E7 lattice.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.png.

The A4
7
lattice is the union of four A7 lattices, which is identical to the E7* lattice (or E2
7
).

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.png + CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png = dual of CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

The A*
7
lattice (also called A8
7
) is the union of eight A7 lattices, and has the vertex arrangement to the dual honeycomb of the omnitruncated 7-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 7-simplex.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png.

This honeycomb is one of 29 unique uniform honeycombs [3] constructed by the Coxeter group, grouped by their extended symmetry of rings within the regular octagon diagram:

A7 honeycombs
Octagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
a1 Octagon symmetry a1.png [3[8]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

CDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

d2 Octagon symmetry d2.png <[3[8]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel nodeab c4.pngCDel split2.pngCDel node c5.png×21

CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 1 CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png

p2 Octagon symmetry p2.png [[3[8]]]CDel branch c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel branch c4.png×22

CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png 2 CDel branch.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png

d4 Octagon symmetry d4.png <2[3[8]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×41

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

p4 Octagon symmetry p4.png [2[3[8]]]CDel branch c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel branch c1.png×42

CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png

d8 Octagon symmetry d8.png [4[3[8]]]CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×8CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png
r16 Octagon symmetry r16.png [8[3[8]]]CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.png×16CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png 3

Projection by folding

The 7-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

See also

Regular and uniform honeycombs in 7-space:

Notes

  1. "The Lattice A7".
  2. N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294
  3. Weisstein, Eric W. "Necklace". MathWorld ., OEIS sequenceA000029 30-1 cases, skipping one with zero marks

Related Research Articles

<span class="mw-page-title-main">Uniform 7-polytope</span> Polytope

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

<span class="mw-page-title-main">Tesseractic honeycomb</span>

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and consisting of a packing of tesseracts (4-hypercubes).

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.

The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.

The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.

<span class="mw-page-title-main">Rectified 7-simplexes</span> Convex uniform 7-polytope in seven-dimensional geometry

In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.

<span class="mw-page-title-main">Cyclotruncated 5-simplex honeycomb</span>

In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation. It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.

In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 5-simplex facets.

In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.

In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 6-simplex facets.

In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 8-simplex facets.

In seven-dimensional Euclidean geometry, the omnitruncated 7-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 7-simplex facets.

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21