Cyclotruncated 7-simplex honeycomb

Last updated
Cyclotruncated 7-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Cyclotruncated simplectic honeycomb
Schläfli symbol t0,1{3[8]}
Coxeter diagram CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
7-face types {36} 7-simplex t0.svg
t0,1{36} 7-simplex t01.svg
t1,2{36} 7-simplex t12.svg
t2,3{36} 7-simplex t23.svg
Vertex figureElongated 6-simplex antiprism
Symmetry ×22, [[3[8]]]
Properties vertex-transitive

In seven-dimensional Euclidean geometry, the cyclotruncated 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, truncated 7-simplex, bitruncated 7-simplex, and tritruncated 7-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

Contents

Structure

It can be constructed by eight sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 6-simplex honeycomb divisions on each hyperplane.

This honeycomb is one of 29 unique uniform honeycombs [1] constructed by the Coxeter group, grouped by their extended symmetry of rings within the regular octagon diagram:

A7 honeycombs
Octagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
a1 Octagon symmetry a1.png [3[8]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

CDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

d2 Octagon symmetry d2.png <[3[8]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel nodeab c4.pngCDel split2.pngCDel node c5.png×21

CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 1 CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png

p2 Octagon symmetry p2.png [[3[8]]]CDel branch c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel branch c4.png×22

CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png 2 CDel branch.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png

d4 Octagon symmetry d4.png <2[3[8]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×41

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png

p4 Octagon symmetry p4.png [2[3[8]]]CDel branch c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c2.pngCDel 3ab.pngCDel branch c1.png×42

CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png

d8 Octagon symmetry d8.png [4[3[8]]]CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×8CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png
r16 Octagon symmetry r16.png [8[3[8]]]CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.png×16CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png 3

See also

Regular and uniform honeycombs in 7-space:

Notes

  1. Weisstein, Eric W. "Necklace". MathWorld ., OEIS sequenceA000029 30-1 cases, skipping one with zero marks

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21