Deltoidal hexecontahedron

Last updated
Deltoidal hexecontahedron
Deltoidalhexecontahedron.jpg
Type Catalan solid
Faces 60 kites
Edges 120
Vertices 62
Symmetry group icosahedral symmetry
Propertiesconvex, face-transitive
Net
Deltoidalhexecontahedron net.png
3D model of a deltoidal hexecontahedron Deltoidal hexecontahedron.stl
3D model of a deltoidal hexecontahedron

In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron [1] ) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices. [2]

Contents

It is topologically identical to the nonconvex rhombic hexecontahedron.

Lengths and angles

The 60 faces are deltoids or kites. The short and long edges of each kite are in the ratio ≈ 1:1.539344663...

The angle between two short edges in a single face is ≈ 118.2686774705°. The opposite angle, between long edges, is ≈ 67.783011547435°. The other two angles of each face, between a short and a long edge each, are both equal to ≈ 86.97415549104°.

The dihedral angle between any pair of adjacent faces is ≈ 154.12136312578°.

Topology

Topologically, the deltoidal hexecontahedron is identical to the nonconvex rhombic hexecontahedron. The deltoidal hexecontahedron can be derived from a dodecahedron (or icosahedron) by pushing the face centers, edge centers and vertices out to different radii from the body center. The radii are chosen so that the resulting shape has planar kite faces each such that vertices go to degree-3 corners, faces to degree-five corners, and edge centers to degree-four points.

Cartesian coordinates

The 62 vertices of the deltoidal hexecontahedron fall in three sets centered on the origin:

These hulls are visualized in the figure below:

Deltoidal Hexacontahedron Hulls.svg

Orthogonal projections

The deltoidal hexecontahedron has 3 symmetry positions located on the 3 types of vertices:

Orthogonal projections
Projective
symmetry
[2][2][2][2][6][10]
Image Dual dodecahedron t02 v.png Dual dodecahedron t02 e34.png Dual dodecahedron t02 e45.png Dual dodecahedron t02 f4.png Dual dodecahedron t02 A2.png Dual dodecahedron t02 H3.png
Dual
image
Dodecahedron t02 v.png Dodecahedron t02 e34.png Dodecahedron t02 e45.png Dodecahedron t02 f4.png Dodecahedron t02 A2.png Dodecahedron t02 H3.png

Variations

This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron. Perspectiva Corporum Regularium 41b.jpg
This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron.

The deltoidal hexecontahedron can be constructed from either the regular icosahedron or regular dodecahedron by adding vertices mid-edge, and mid-face, and creating new edges from each edge center to the face centers. Conway polyhedron notation would give these as oI, and oD, ortho-icosahedron, and ortho-dodecahedron. These geometric variations exist as a continuum along one degree of freedom.

Deltoidal hexecontahedron on icosahedron dodecahedron.png
Spherical deltoidal hexecontahedron Spherical deltoidal hexecontahedron.png
Spherical deltoidal hexecontahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an icosahedron and dodecahedron arranged in their dual positions.

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.
Spherical trigonal bipyramid.svg
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4
H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4..4

See also

References

  1. Conway, Symmetries of things, p.284-286
  2. "Archimedean Dual Graph".