Deltoidal hexecontahedron

Last updated
Deltoidal hexecontahedron
Deltoidalhexecontahedron.jpg
(Click here for rotating model)
Type Catalan
Conway notation oD or deD
Coxeter diagram CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png
Face polygon DU27 facets.png
kite
Faces60
Edges120
Vertices62 = 12 + 20 + 30
Face configuration V3.4.5.4
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 154.1214° arccos(-19-85/41)
Propertiesconvex, face-transitive
Small rhombicosidodecahedron.png
rhombicosidodecahedron
(dual polyhedron)
Deltoidalhexecontahedron net.png
Net
3D model of a deltoidal hexecontahedron Deltoidal hexecontahedron.stl
3D model of a deltoidal hexecontahedron

In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron [1] ) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices. [2]

Contents

It is topologically identical to the nonconvex rhombic hexecontahedron.

Lengths and angles

The 60 faces are deltoids or kites. The short and long edges of each kite are in the ratio 1:7 + 5/6 ≈ 1:1.539344663...

The angle between two short edges in a single face is arccos(-5-25/20)≈118.2686774705°. The opposite angle, between long edges, is arccos(-5+95/40)≈67.783011547435° . The other two angles of each face, between a short and a long edge each, are both equal to arccos(5-25/10)≈86.97415549104°.

The dihedral angle between any pair of adjacent faces is arccos(-19-85/41)≈154.12136312578°.

Topology

Topologically, the deltoidal hexecontahedron is identical to the nonconvex rhombic hexecontahedron. The deltoidal hexecontahedron can be derived from a dodecahedron (or icosahedron) by pushing the face centers, edge centers and vertices out to different radii from the body center. The radii are chosen so that the resulting shape has planar kite faces each such that vertices go to degree-3 corners, faces to degree-five corners, and edge centers to degree-four points.

Cartesian coordinates

The 62 vertices of the deltoidal hexecontahedron fall in three sets centered on the origin:

These hulls are visualized in the figure below:

Deltoidal Hexacontahedron Hulls.svg

Orthogonal projections

The deltoidal hexecontahedron has 3 symmetry positions located on the 3 types of vertices:

Orthogonal projections
Projective
symmetry
[2][2][2][2][6][10]
Image Dual dodecahedron t02 v.png Dual dodecahedron t02 e34.png Dual dodecahedron t02 e45.png Dual dodecahedron t02 f4.png Dual dodecahedron t02 A2.png Dual dodecahedron t02 H3.png
Dual
image
Dodecahedron t02 v.png Dodecahedron t02 e34.png Dodecahedron t02 e45.png Dodecahedron t02 f4.png Dodecahedron t02 A2.png Dodecahedron t02 H3.png

Variations

This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron. Perspectiva Corporum Regularium 41b.jpg
This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron.

The deltoidal hexecontahedron can be constructed from either the regular icosahedron or regular dodecahedron by adding vertices mid-edge, and mid-face, and creating new edges from each edge center to the face centers. Conway polyhedron notation would give these as oI, and oD, ortho-icosahedron, and ortho-dodecahedron. These geometric variations exist as a continuum along one degree of freedom.

Deltoidal hexecontahedron on icosahedron dodecahedron.png
Spherical deltoidal hexecontahedron Spherical deltoidal hexecontahedron.png
Spherical deltoidal hexecontahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an icosahedron and dodecahedron arranged in their dual positions.

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.
Spherical trigonal bipyramid.svg
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4
H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4..4

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

<span class="mw-page-title-main">Snub dodecahedron</span> Archimedean solid with 92 faces

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appear in the garnet crystal, the architectural philosophies, practical usages, and toys.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Triakis octahedron</span> Catalan solid with 24 faces

In geometry, a triakis octahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Disdyakis dodecahedron</span> Geometric shape with 48 faces

In geometry, a disdyakis dodecahedron, or d48, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid creates a polyhedron that looks almost like the disdyakis dodecahedron, and is topologically equivalent to it.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron, kisrhombic triacontahedron or d120 is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Pentagonal hexecontahedron</span>

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

<span class="mw-page-title-main">Great snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Medial rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

<span class="mw-page-title-main">Great rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

<span class="mw-page-title-main">Medial deltoidal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

<span class="mw-page-title-main">Great deltoidal hexecontahedron</span>

In geometry, the great deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually identical to the great rhombidodecacron. It has 60 intersecting cross quadrilateral faces, 120 edges, and 62 vertices. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

<span class="mw-page-title-main">Pentakis icosidodecahedron</span> Geodesic polyhedron with 80 faces

In geometry, the pentakis icosidodecahedron or subdivided icosahedron is a convex polyhedron with 80 triangular faces, 120 edges, and 42 vertices. It is a dual of the truncated rhombic triacontahedron.

<span class="mw-page-title-main">Rhombic hexecontahedron</span> 3D geometric shape

In geometry, a rhombic hexecontahedron is a stellation of the rhombic triacontahedron. It is nonconvex with 60 golden rhombic faces with icosahedral symmetry. It was described mathematically in 1940 by Helmut Unkelbach.

References

  1. Conway, Symmetries of things, p.284-286
  2. "Archimedean Dual Graph".