Great deltoidal hexecontahedron

Last updated
Great deltoidal hexecontahedron
DU67 great strombic hexecontahedron.png
Type Star polyhedron
Face DU67 facets.png
Elements F = 60, E = 120
V = 62 (χ = 2)
Symmetry group Ih, [5,3], *532
Index references DU 67
dual polyhedron Nonconvex great rhombicosidodecahedron
3D model of a great deltoidal hexecontahedron Great deltoidal hexecontahedron.stl
3D model of a great deltoidal hexecontahedron

In geometry, the great deltoidal hexecontahedron (or great sagittal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually identical to the great rhombidodecacron. It has 60 intersecting cross quadrilateral faces, 120 edges, and 62 vertices. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

Contents

It is also called a great strombic hexecontahedron.

Proportions

They have two angles of , one of and one of . Its dihedral angles equal . The ratio between the lengths of the long and short edges is .

Related Research Articles

Deltoidal icositetrahedron polyhedron

In geometry, a deltoidal icositetrahedron is a Catalan solid. Its dual polyhedron is the rhombicuboctahedron.

Pentagonal hexecontahedron polyhedron

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

Small dodecicosidodecahedron polyhedron with 44 faces

In geometry, the small dodecicosidodecahedron (or small dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U33. It has 44 faces (12 triangles, 20 pentagons, and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

Cubitruncated cuboctahedron polyhedron with 20 faces

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices.

Great truncated icosidodecahedron polyhedron with 62 faces

In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices. It is given a Schläfli symbol t0,1,2{​53,3}, and Coxeter-Dynkin diagram, .

Great rhombic triacontahedron polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

Great deltoidal icositetrahedron polyhedron with 24 faces

In geometry, the great deltoidal icositetrahedron is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

Great icosacronic hexecontahedron polyhedron with 60 faces

In geometry, the great icosacronic hexecontahedron is the dual of the great icosicosidodecahedron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

Great rhombihexacron polyhedron with 24 faces

In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, and 48 edges.

Small stellapentakis dodecahedron polyhedron with 60 faces

In geometry, the small stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great dodecahedron. It has 60 intersecting triangular faces.

Medial deltoidal hexecontahedron polyhedron with 60 faces

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

Great stellapentakis dodecahedron polyhedron with 60 faces

In geometry, the great stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting triangular faces.

Great triakis icosahedron polyhedron with 60 faces

In geometry, the great triakis icosahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great stellated truncated dodecahedron. Its faces are isosceles triangles. Part of each triangle lies within the solid, hence is invisible in solid models.

Great disdyakis dodecahedron polyhedron with 48 faces

In geometry, the great disdyakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great truncated cuboctahedron. It has 48 triangular faces.

Small icosacronic hexecontahedron polyhedron with 60 faces

In geometry, the small icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

Great ditrigonal dodecacronic hexecontahedron polyhedron with 60 faces

In geometry, the great ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

Small ditrigonal dodecacronic hexecontahedron polyhedron with 60 faces

In geometry, the small ditrigonal dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually identical to the small dodecicosacron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

Medial icosacronic hexecontahedron polyhedron with 60 faces

In geometry, the medial icosacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform icosidodecadodecahedron. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.

Great pentakis dodecahedron polyhedron with 60 faces

In geometry, the great pentakis dodecahedron is a nonconvex isohedral polyhedron.

Great dodecacronic hexecontahedron polyhedron with 60 faces

In geometry, the great dodecacronic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great dodecicosidodecahedron. Its 60 intersecting quadrilateral faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

References