List of uniform polyhedra by Schwarz triangle

Last updated

Coxeter's listing of degenerate Wythoffian uniform polyhedra, giving Wythoff symbols, vertex figures, and descriptions using Schlafli symbols. All the uniform polyhedra and all the degenerate Wythoffian uniform polyhedra are listed in this article. Degenerate uniform polyhedra vertex figures.png
Coxeter's listing of degenerate Wythoffian uniform polyhedra, giving Wythoff symbols, vertex figures, and descriptions using Schläfli symbols. All the uniform polyhedra and all the degenerate Wythoffian uniform polyhedra are listed in this article.

There are many relationships among the uniform polyhedra. The Wythoff construction is able to construct almost all of the uniform polyhedra from the acute and obtuse Schwarz triangles. The numbers that can be used for the sides of a non-dihedral acute or obtuse Schwarz triangle that does not necessarily lead to only degenerate uniform polyhedra are 2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, and 5/4 (but numbers with numerator 4 and those with numerator 5 may not occur together). (4/2 can also be used, but only leads to degenerate uniform polyhedra as 4 and 2 have a common factor.) There are 44 such Schwarz triangles (5 with tetrahedral symmetry, 7 with octahedral symmetry and 32 with icosahedral symmetry), which, together with the infinite family of dihedral Schwarz triangles, can form almost all of the non-degenerate uniform polyhedra. Many degenerate uniform polyhedra, with completely coincident vertices, edges, or faces, may also be generated by the Wythoff construction, and those that arise from Schwarz triangles not using 4/2 are also given in the tables below along with their non-degenerate counterparts. Reflex Schwarz triangles have not been included, as they simply create duplicates or degenerates; however, a few are mentioned outside the tables due to their application to three of the snub polyhedra.

Contents

There are a few non-Wythoffian uniform polyhedra, which no Schwarz triangles can generate; however, most of them can be generated using the Wythoff construction as double covers (the non-Wythoffian polyhedron is covered twice instead of once) or with several additional coinciding faces that must be discarded to leave no more than two faces at every edge (see Omnitruncated polyhedron#Other even-sided nonconvex polyhedra). Such polyhedra are marked by an asterisk in this list. The only uniform polyhedra which still fail to be generated by the Wythoff construction are the great dirhombicosidodecahedron and the great disnub dirhombidodecahedron.

Each tiling of Schwarz triangles on a sphere may cover the sphere only once, or it may instead wind round the sphere a whole number of times, crossing itself in the process. The number of times the tiling winds round the sphere is the density of the tiling, and is denoted μ.

Jonathan Bowers' short names for the polyhedra, known as Bowers acronyms, are used instead of the full names for the polyhedra to save space. [1] The Maeder index is also given. Except for the dihedral Schwarz triangles, the Schwarz triangles are ordered by their densities.

The analogous cases of Euclidean tilings are also listed, and those of hyperbolic tilings briefly and incompletely discussed.

Möbius and Schwarz triangles

There are 4 spherical triangles with angles π/p, π/q, π/r, where (p q r) are integers: (Coxeter, "Uniform polyhedra", 1954)

  1. (2 2 r) - Dihedral
  2. (2 3 3) - Tetrahedral
  3. (2 3 4) - Octahedral
  4. (2 3 5) - Icosahedral

These are called Möbius triangles.

In addition Schwarz triangles consider (p q r) which are rational numbers. Each of these can be classified in one of the 4 sets above.

Density (μ)DihedralTetrahedralOctahedralIcosahedral
d(2 2 n/d)
1(2 3 3)(2 3 4)(2 3 5)
2(3/2 3 3)(3/2 4 4)(3/2 5 5), (5/2 3 3)
3(2 3/2 3)(2 5/2 5)
4(3 4/3 4)(3 5/3 5)
5(2 3/2 3/2)(2 3/2 4)
6(3/2 3/2 3/2)(5/2 5/2 5/2), (3/2 3 5), (5/4 5 5)
7(2 3 4/3)(2 3 5/2)
8(3/2 5/2 5)
9(2 5/3 5)
10(3 5/3 5/2), (3 5/4 5)
11(2 3/2 4/3)(2 3/2 5)
13(2 3 5/3)
14(3/2 4/3 4/3)(3/2 5/2 5/2), (3 3 5/4)
16(3 5/4 5/2)
17(2 3/2 5/2)
18(3/2 3 5/3), (5/3 5/3 5/2)
19(2 3 5/4)
21(2 5/4 5/2)
22(3/2 3/2 5/2)
23(2 3/2 5/3)
26(3/2 5/3 5/3)
27(2 5/4 5/3)
29(2 3/2 5/4)
32(3/2 5/4 5/3)
34(3/2 3/2 5/4)
38(3/2 5/4 5/4)
42(5/4 5/4 5/4)

Although a polyhedron usually has the same density as the Schwarz triangle it is generated from, this is not always the case. Firstly, polyhedra that have faces passing through the centre of the model (including the hemipolyhedra, great dirhombicosidodecahedron, and great disnub dirhombidodecahedron) do not have a well-defined density. Secondly, the distortion necessary to recover uniformity when changing a spherical polyhedron to its planar counterpart can push faces through the centre of the polyhedron and back out the other side, changing the density. This happens in the following cases:

Summary table

The eight forms for the Wythoff constructions from a general triangle (p q r). Partial snubs can also be created (not shown in this article). Wythoff construction-pqr.png
The eight forms for the Wythoff constructions from a general triangle (p q r). Partial snubs can also be created (not shown in this article).
The nine reflexible forms for the Wythoff constructions from a general quadrilateral (p q r s). Wythoff construction-pqrs.png
The nine reflexible forms for the Wythoff constructions from a general quadrilateral (p q r s).

There are seven generator points with each set of p,q,r (and a few special forms):

GeneralRight triangle (r=2)
DescriptionWythoff
symbol
Vertex
configuration
Coxeter
diagram

CDel pqr.png
Wythoff
symbol
Vertex
configuration
Schläfli
symbol
Coxeter
diagram
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
regular and
quasiregular
q | p r(p.r)qCDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngq | p 2pq{p,q}CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
p | q r(q.r)pCDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngp | q 2qp{q,p}CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png
r | p q(q.p)rCDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.png2 | p q(q.p)2t1{p,q}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png
truncated and
expanded
q r | pq.2p.r.2pCDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngq 2 | pq.2p.2pt0,1{p,q}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png
p r | qp.2q.r.2qCDel 3.pngCDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngp 2 | qp. 2q.2qt0,1{q,p}CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png
p q | r2r.q.2r.pCDel 3.pngCDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngp q | 24.q.4.pt0,2{p,q}CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png
even-faced p q r |2r.2q.2pCDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngp q 2 |4.2q.2pt0,1,2{p,q}CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png
p q r
s
|
2p.2q.-2p.-2q-p 2 r
s
|
2p.4.-2p.4/3-
snub | p q r3.r.3.q.3.pCDel 3.pngCDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.png| p q 23.3.q.3.psr{p,q}CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
| p q r s(4.p.4.q.4.r.4.s)/2----

There are four special cases:

This conversion table from Wythoff symbol to vertex configuration fails for the exceptional five polyhedra listed above whose densities do not match the densities of their generating Schwarz triangle tessellations. In these cases the vertex figure is highly distorted to achieve uniformity with flat faces: in the first two cases it is an obtuse triangle instead of an acute triangle, and in the last three it is a pentagram or hexagram instead of a pentagon or hexagon, winding around the centre twice. This results in some faces being pushed right through the polyhedron when compared with the topologically equivalent forms without the vertex figure distortion and coming out retrograde on the other side. [2]

In the tables below, red backgrounds mark degenerate polyhedra. Green backgrounds mark the convex uniform polyhedra.

Dihedral (prismatic)

In dihedral Schwarz triangles, two of the numbers are 2, and the third may be any rational number strictly greater than 1.

  1. (2 2 n/d) – degenerate if gcd(n, d) > 1.

Many of the polyhedra with dihedral symmetry have digon faces that make them degenerate polyhedra (e.g. dihedra and hosohedra). Columns of the table that only give degenerate uniform polyhedra are not included: special degenerate cases (only in the (2 2 2) Schwarz triangle) are marked with a large cross. Uniform crossed antiprisms with a base {p} where p < 3/2 cannot exist as their vertex figures would violate the triangular inequality; these are also marked with a large cross. The 3/2-crossed antiprism (trirp) is degenerate, being flat in Euclidean space, and is also marked with a large cross. The Schwarz triangles (2 2 n/d) are listed here only when gcd(n, d) = 1, as they otherwise result in only degenerate uniform polyhedra.

The list below gives all possible cases where n ≤ 6.

(p q r)q r | p
q.2p.r.2p
p r | q
p. 2q.r.2q
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
(2 2 2)
(μ=1)
X
X
Uniform polyhedron 222-t012.png
4.4.4
cube
4-p
Linear antiprism.png
3.3.3
tet
2-ap
(2 2 3)
(μ=1)
Triangular prism.png
4.3.4
trip
3-p
Triangular prism.png
4.3.4
trip
3-p
Uniform polyhedron-23-t012.png
6.4.4
hip
6-p
Trigonal antiprism.png
3.3.3.3
oct
3-ap
(2 2 3/2)
(μ=2)
Triangular prism.png
4.3.4
trip
3-p
Triangular prism.png
4.3.4
trip
3-p
Triangular prism.png
6/2.4.4
2trip
6/2-p
X
(2 2 4)
(μ=1)
Tetragonal prism.png
4.4.4
cube
4-p
Tetragonal prism.png
4.4.4
cube
4-p
Octagonal prism.png
8.4.4
op
8-p
Square antiprism.png
3.4.3.3
squap
4-ap
(2 2 4/3)
(μ=3)
Tetragonal prism.png
4.4.4
cube
4-p
Tetragonal prism.png
4.4.4
cube
4-p
Prism 8-3.png
8/3.4.4
stop
8/3-p
X
(2 2 5)
(μ=1)
Pentagonal prism.png
4.5.4
pip
5-p
Pentagonal prism.png
4.5.4
pip
5-p
Decagonal prism.png
10.4.4
dip
10-p
Pentagonal antiprism.png
3.5.3.3
pap
5-ap
(2 2 5/2)
(μ=2)
Pentagrammic prism.png
4.5/2.4
stip
5/2-p
Pentagrammic prism.png
4.5/2.4
stip
5/2-p
Pentagonal prism.png
10/2.4.4
2pip
10/2-p
Pentagrammic antiprism.png
3.5/2.3.3
stap
5/2-ap
(2 2 5/3)
(μ=3)
Pentagrammic prism.png
4.5/2.4
stip
5/2-p
Pentagrammic prism.png
4.5/2.4
stip
5/2-p
Prism 10-3.png
10/3.4.4
stiddip
10/3-p
Pentagrammic crossed antiprism.png
3.5/3.3.3
starp
5/3-ap
(2 2 5/4)
(μ=4)
Pentagonal prism.png
4.5.4
pip
5-p
Pentagonal prism.png
4.5.4
pip
5-p
Pentagrammic prism.png
10/4.4.4
2stip
10/4-p
X
(2 2 6)
(μ=1)
Hexagonal prism.png
4.6.4
hip
6-p
Hexagonal prism.png
4.6.4
hip
6-p
Dodecagonal prism.png
12.4.4
twip
12-p
Hexagonal antiprism.png
3.6.3.3
hap
6-ap
(2 2 6/5)
(μ=5)
Hexagonal prism.png
4.6.4
hip
6-p
Hexagonal prism.png
4.6.4
hip
6-p
Prism 12-5.png
12/5.4.4
stwip
12/5-p
X
(2 2 n)
(μ=1)
4.n.4
n-p
4.n.4
n-p
2n.4.4
2n-p
3.n.3.3
n-ap
(2 2 n/d)
(μ=d)
4.n/d.4
n/d-p
4.n/d.4
n/d-p
2n/d.4.4
2n/d-p
3.n/d.3.3
n/d-ap

Tetrahedral

In tetrahedral Schwarz triangles, the maximum numerator allowed is 3.

#(p q r)q | p r
(p.r)q
p | q r
(q.r)p
r | p q
(q.p)r
q r | p
q.2p.r.2p
p r | q
p. 2q.r.2q
p q | r
2r.q.2r.p
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
1(3 3 2)
(μ=1)
Tetrahedron.png
3.3.3
tet
U1
Tetrahedron.png
3.3.3
tet
U1
Rectified tetrahedron.png
3.3.3.3
oct
U5
Truncated tetrahedron.png
3.6.6
tut
U2
Truncated tetrahedron.png
3.6.6
tut
U2
Cantellated tetrahedron.png
4.3.4.3
co
U7
Omnitruncated tetrahedron.png
4.6.6
toe
U8
Snub tetrahedron.png
3.3.3.3.3
ike
U22
2(3 3 3/2)
(μ=2)
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Octahemioctahedron 3-color.png
3.6.3/2.6
oho
U3
Octahemioctahedron 3-color.png
3.6.3/2.6
oho
U3
Rectified tetrahedron.png
2(6/2.3.6/2.3)
2oct
Truncated tetrahedron.png
2(6/2.6.6)
2tut
Rectified tetrahedron.png
2(3.3/2.3.3.3.3)
2oct+8{3}
3(3 2 3/2)
(μ=3)
Rectified tetrahedron.png
3.3.3.3
oct
U5
Tetrahedron.png
3.3.3
tet
U1
Tetrahedron.png
3.3.3
tet
U1
Truncated tetrahedron.png
3.6.6
tut
U2
Tetrahemihexahedron.png
2(3/2.4.3.4)
2thah
U4*
Tetrahedron.png
3(3.6/2.6/2)
3tet
Cubohemioctahedron.png
2(6/2.4.6)
cho+4{6/2}
U15*
Tetrahedron.png
3(3.3.3)
3tet
4(2 3/2 3/2)
(μ=5)
Tetrahedron.png
3.3.3
tet
U1
Rectified tetrahedron.png
3.3.3.3
oct
U5
Tetrahedron.png
3.3.3
tet
U1
Cantellated tetrahedron.png
3.4.3.4
co
U7
Tetrahedron.png
3(6/2.3.6/2)
3tet
Tetrahedron.png
3(6/2.3.6/2)
3tet
Rectified tetrahedron.png
4(6/2.6/2.4)
2oct+6{4}
Retrosnub tetrahedron.png
(3.3.3.3.3)/2
gike
U53
5(3/2 3/2 3/2)
(μ=6)
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Tetrahedron.png
(3.3.3.3.3.3)/2
2tet
Rectified tetrahedron.png
2(6/2.3.6/2.3)
2oct
Rectified tetrahedron.png
2(6/2.3.6/2.3)
2oct
Rectified tetrahedron.png
2(6/2.3.6/2.3)
2oct
Tetrahedron.png
6(6/2.6/2.6/2)
6tet
?

Octahedral

In octahedral Schwarz triangles, the maximum numerator allowed is 4. There also exist octahedral Schwarz triangles which use 4/2 as a number, but these only lead to degenerate uniform polyhedra as 4 and 2 have a common factor.

#(p q r)q | p r
(p.r)q
p | q r
(q.r)p
r | p q
(q.p)r
q r | p
q.2p.r.2p
p r | q
p. 2q.r.2q
p q | r
2r.q.2r.p
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
1(4 3 2)
(μ=1)
Hexahedron.png
4.4.4
cube
U6
Octahedron.png
3.3.3.3
oct
U5
Cuboctahedron.png
3.4.3.4
co
U7
Truncated hexahedron.png
3.8.8
tic
U9
Truncated octahedron.png
4.6.6
toe
U8
Small rhombicuboctahedron.png
4.3.4.4
sirco
U10
Great rhombicuboctahedron.png
4.6.8
girco
U11
Snub hexahedron.png
3.3.3.3.4
snic
U12
2(4 4 3/2)
(μ=2)
Octahedron.png
(3/2.4)4
oct+6{4}
Octahedron.png
(3/2.4)4
oct+6{4}
Hexahedron.png
(4.4.4.4.4.4)/2
2cube
Small cubicuboctahedron.png
3/2.8.4.8
socco
U13
Small cubicuboctahedron.png
3/2.8.4.8
socco
U13
Cuboctahedron.png
2(6/2.4.6/2.4)
2co
Truncated hexahedron.png
2(6/2.8.8)
2tic
?
3(4 3 4/3)
(μ=4)
Hexahedron.png
(4.4.4.4.4.4)/2
2cube
Octahedron.png
(3/2.4)4
oct+6{4}
Octahedron.png
(3/2.4)4
oct+6{4}
Small cubicuboctahedron.png
3/2.8.4.8
socco
U13
Cubohemioctahedron.png
2(4/3.6.4.6)
2cho
U15*
Great cubicuboctahedron.png
3.8/3.4.8/3
gocco
U14
Cubitruncated cuboctahedron.png
6.8.8/3
cotco
U16
?
4(4 2 3/2)
(μ=5)
Cuboctahedron.png
3.4.3.4
co
U7
Octahedron.png
3.3.3.3
oct
U5
Hexahedron.png
4.4.4
cube
U6
Truncated hexahedron.png
3.8.8
tic
U9
Uniform great rhombicuboctahedron.png
4.4.3/2.4
querco
U17
Octahedron.png
4(4.6/2.6/2)
2oct+6{4}
Small rhombihexahedron.png
2(4.6/2.8)
sroh+8{6/2}
U18*
?
5(3 2 4/3)
(μ=7)
Cuboctahedron.png
3.4.3.4
co
U7
Hexahedron.png
4.4.4
cube
U6
Octahedron.png
3.3.3.3
oct
U5
Truncated octahedron.png
4.6.6
toe
U8
Uniform great rhombicuboctahedron.png
4.4.3/2.4
querco
U17
Stellated truncated hexahedron.png
3.8/3.8/3
quith
U19
Great truncated cuboctahedron.png
4.6/5.8/3
quitco
U20
?
6(2 3/2 4/3)
(μ=11)
Hexahedron.png
4.4.4
cube
U6
Cuboctahedron.png
3.4.3.4
co
U7
Octahedron.png
3.3.3.3
oct
U5
Small rhombicuboctahedron.png
4.3.4.4
sirco
U10
Octahedron.png
4(4.6/2.6/2)
2oct+6{4}
Stellated truncated hexahedron.png
3.8/3.8/3
quith
U19
Great rhombihexahedron.png
2(4.6/2.8/3)
groh+8{6/2}
U21*
?
7(3/2 4/3 4/3)
(μ=14)
Octahedron.png
(3/2.4)4 = (3.4)4/3
oct+6{4}
Hexahedron.png
(4.4.4.4.4.4)/2
2cube
Octahedron.png
(3/2.4)4 = (3.4)4/3
oct+6{4}
Cuboctahedron.png
2(6/2.4.6/2.4)
2co
Great cubicuboctahedron.png
3.8/3.4.8/3
gocco
U14
Great cubicuboctahedron.png
3.8/3.4.8/3
gocco
U14
Stellated truncated hexahedron.png
2(6/2.8/3.8/3)
2quith
?

Icosahedral

In icosahedral Schwarz triangles, the maximum numerator allowed is 5. Additionally, the numerator 4 cannot be used at all in icosahedral Schwarz triangles, although numerators 2 and 3 are allowed. (If 4 and 5 could occur together in some Schwarz triangle, they would have to do so in some Möbius triangle as well; but this is impossible as (2 4 5) is a hyperbolic triangle, not a spherical one.)

#(p q r)q | p r
(p.r)q
p | q r
(q.r)p
r | p q
(q.p)r
q r | p
q.2p.r.2p
p r | q
p. 2q.r.2q
p q | r
2r.q.2r.p
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
1(5 3 2)
(μ=1)
Dodecahedron.png
5.5.5
doe
U23
Icosahedron.png
3.3.3.3.3
ike
U22
Icosidodecahedron.png
3.5.3.5
id
U24
Truncated dodecahedron.png
3.10.10
tid
U26
Truncated icosahedron.png
5.6.6
ti
U25
Small rhombicosidodecahedron.png
4.3.4.5
srid
U27
Great rhombicosidodecahedron.png
4.6.10
grid
U28
Snub dodecahedron ccw.png
3.3.3.3.5
snid
U29
2(3 3 5/2)
(μ=2)
Small ditrigonal icosidodecahedron.png
3.5/2.3.5/2.3.5/2
sidtid
U30
Small ditrigonal icosidodecahedron.png
3.5/2.3.5/2.3.5/2
sidtid
U30
Icosahedron.png
(310)/2
2ike
Small icosicosidodecahedron.png
3.6.5/2.6
siid
U31
Small icosicosidodecahedron.png
3.6.5/2.6
siid
U31
Icosidodecahedron.png
2(10/2.3.10/2.3)
2id
Truncated icosahedron.png
2(10/2.6.6)
2ti
Small snub icosicosidodecahedron.png
3.5/2.3.3.3.3
seside
U32
3(5 5 3/2)
(μ=2)
Icosahedron.png
(5.3/2)5
cid
Icosahedron.png
(5.3/2)5
cid
Dodecahedron.png
(5.5.5.5.5.5)/2
2doe
Small dodecicosidodecahedron.png
5.10.3/2.10
saddid
U33
Small dodecicosidodecahedron.png
5.10.3/2.10
saddid
U33
Icosidodecahedron.png
2(6/2.5.6/2.5)
2id
Truncated dodecahedron.png
2(6/2.10.10)
2tid
Icosidodecahedron.png
2(3.3/2.3.5.3.5)
2id+40{3}
4(5 5/2 2)
(μ=3)
Great dodecahedron.png
(5.5.5.5.5)/2
gad
U35
Small stellated dodecahedron.png
5/2.5/2.5/2.5/2.5/2
sissid
U34
Dodecadodecahedron.png
5/2.5.5/2.5
did
U36
Great truncated dodecahedron.png
5/2.10.10
tigid
U37
Dodecahedron.png
5.10/2.10/2
3doe
Rhombidodecadodecahedron.png
4.5/2.4.5
raded
U38
Small rhombidodecahedron.png
2(4.10/2.10)
sird+12{10/2}
U39*
Snub dodecadodecahedron.png
3.3.5/2.3.5
siddid
U40
5(5 3 5/3)
(μ=4)
Ditrigonal dodecadodecahedron.png
5.5/3.5.5/3.5.5/3
ditdid
U41
Small stellated dodecahedron.png
(3.5/3)5
gacid
Icosahedron.png
(3.5)5/3
cid
Small ditrigonal dodecicosidodecahedron.png
3.10.5/3.10
sidditdid
U43
Icosidodecadodecahedron.png
5.6.5/3.6
ided
U44
Great ditrigonal dodecicosidodecahedron.png
10/3.3.10/3.5
gidditdid
U42
Icositruncated dodecadodecahedron.png
10/3.6.10
idtid
U45
Snub icosidodecadodecahedron.png
3.5/3.3.3.3.5
sided
U46
6(5/2 5/2 5/2)
(μ=6)
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Dodecadodecahedron.png
2(5/2.10/2)2
2did
Dodecadodecahedron.png
2(5/2.10/2)2
2did
Dodecadodecahedron.png
2(5/2.10/2)2
2did
Dodecahedron.png
6(10/2.10/2.10/2)
6doe
Small ditrigonal icosidodecahedron.png
3(3.5/2.3.5/2.3.5/2)
3sidtid
7(5 3 3/2)
(μ=6)
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Great icosahedron.png
(310)/4
2gike
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Small icosihemidodecahedron.png
2(3.10.3/2.10)
2seihid
U49*
Great icosicosidodecahedron.png
5.6.3/2.6
giid
U48
Icosahedron.png
5(6/2.3.6/2.5)
3ike+gad
Small dodecicosahedron.png
2(6.6/2.10)
siddy+20{6/2}
U50*
Icosahedron.png
5(3.3.3.3.3.5)/2
5ike+gad
8(5 5 5/4)
(μ=6)
Great dodecahedron.png
(510)/4
2gad
Great dodecahedron.png
(510)/4
2gad
Great dodecahedron.png
(510)/4
2gad
Small dodecahemidodecahedron.png
2(5.10.5/4.10)
2sidhid
U51*
Small dodecahemidodecahedron.png
2(5.10.5/4.10)
2sidhid
U51*
Dodecadodecahedron.png
10/4.5.10/4.5
2did
Great truncated dodecahedron.png
2(10/4.10.10)
2tigid
Icosahedron.png
3(3.5.3.5.3.5)
3cid
9(3 5/2 2)
(μ=7)
Great icosahedron.png
(3.3.3.3.3)/2
gike
U53
Great stellated dodecahedron.png
5/2.5/2.5/2
gissid
U52
Great icosidodecahedron.png
5/2.3.5/2.3
gid
U54
Great truncated icosahedron.png
5/2.6.6
tiggy
U55
Icosahedron.png
3.10/2.10/2
2gad+ike
Small ditrigonal icosidodecahedron.png
3(4.5/2.4.3)
sicdatrid
Rhombicosahedron.png
4.10/2.6
ri+12{10/2}
U56*
Great snub icosidodecahedron.png
3.3.5/2.3.3
gosid
U57
10(5 5/2 3/2)
(μ=8)
Icosahedron.png
(5.3/2)5
cid
Small stellated dodecahedron.png
(5/3.3)5
gacid
Ditrigonal dodecadodecahedron.png
5.5/3.5.5/3.5.5/3
ditdid
U41
Small ditrigonal dodecicosidodecahedron.png
5/3.10.3.10
sidditdid
U43
Icosahedron.png
5(5.10/2.3.10/2)
ike+3gad
Small ditrigonal icosidodecahedron.png
3(6/2.5/2.6/2.5)
sidtid+gidtid
Icosidodecahedron.png
4(6/2.10/2.10)
id+seihid+sidhid
?
(3|3 5/2) + (3/2|3 5)
11(5 2 5/3)
(μ=9)
Dodecadodecahedron.png
5.5/2.5.5/2
did
U36
Small stellated dodecahedron.png
5/2.5/2.5/2.5/2.5/2
sissid
U34
Great dodecahedron.png
(5.5.5.5.5)/2
gad
U35
Great truncated dodecahedron.png
5/2.10.10
tigid
U37
Ditrigonal dodecadodecahedron.png
3(5.4.5/3.4)
cadditradid
Small stellated truncated dodecahedron.png
10/3.5.5
quit sissid
U58
Truncated dodecadodecahedron.png
10/3.4.10/9
quitdid
U59
Inverted snub dodecadodecahedron.png
3.5/3.3.3.5
isdid
U60
12(3 5/2 5/3)
(μ=10)
Small stellated dodecahedron.png
(3.5/3)5
gacid
Great stellated dodecahedron.png
(5/2)6/2
2gissid
Small stellated dodecahedron.png
(5/2.3)5/3
gacid
Small dodecahemicosahedron.png
2(5/2.6.5/3.6)
2sidhei
U62*
Small ditrigonal icosidodecahedron.png
3(3.10/2.5/3.10/2)
ditdid+gidtid
Great dodecicosidodecahedron.png
10/3.5/2.10/3.3
gaddid
U61
Great dodecicosahedron.png
10/3.10/2.6
giddy+12{10/2}
U63*
Great snub dodecicosidodecahedron.png
3.5/3.3.5/2.3.3
gisdid
U64
13(5 3 5/4)
(μ=10)
Dodecahedron.png
(5.5.5.5.5.5)/2
2doe
Icosahedron.png
(3/2.5)5
cid
Icosahedron.png
(3.5)5/3
cid
Small dodecicosidodecahedron.png
3/2.10.5.10
saddid
U33
Great dodecahemicosahedron.png
2(5.6.5/4.6)
2gidhei
U65*
Small ditrigonal icosidodecahedron.png
3(10/4.3.10/4.5)
sidtid+ditdid
Small dodecicosahedron.png
2(10/4.6.10)
siddy+12{10/4}
U50*
?
14(5 2 3/2)
(μ=11)
Icosidodecahedron.png
5.3.5.3
id
U24
Icosahedron.png
3.3.3.3.3
ike
U22
Dodecahedron.png
5.5.5
doe
U23
Truncated dodecahedron.png
3.10.10
tid
U26
Great ditrigonal icosidodecahedron.png
3(5/4.4.3/2.4)
gicdatrid
Icosahedron.png
5(5.6/2.6/2)
2ike+gad
Small rhombidodecahedron.png
2(6/2.4.10)
sird+20{6/2}
U39*
Icosahedron.png
5(3.3.3.5.3)/2
4ike+gad
15(3 2 5/3)
(μ=13)
Great icosidodecahedron.png
3.5/2.3.5/2
gid
U54
Great stellated dodecahedron.png
5/2.5/2.5/2
gissid
U52
Great icosahedron.png
(3.3.3.3.3)/2
gike
U53
Great truncated icosahedron.png
5/2.6.6
tiggy
U55
Uniform great rhombicosidodecahedron.png
3.4.5/3.4
qrid
U67
Great stellated truncated dodecahedron.png
10/3.10/3.3
quit gissid
U66
Great truncated icosidodecahedron.png
10/3.4.6
gaquatid
U68
Great inverted snub icosidodecahedron.png
3.5/3.3.3.3
gisid
U69
16(5/2 5/2 3/2)
(μ=14)
Small stellated dodecahedron.png
(5/3.3)5
gacid
Small stellated dodecahedron.png
(5/3.3)5
gacid
Great stellated dodecahedron.png
(5/2)6/2
2gissid
Small ditrigonal icosidodecahedron.png
3(5/3.10/2.3.10/2)
ditdid+gidtid
Small ditrigonal icosidodecahedron.png
3(5/3.10/2.3.10/2)
ditdid+gidtid
Great icosidodecahedron.png
2(6/2.5/2.6/2.5/2)
2gid
Icosahedron.png
10(6/2.10/2.10/2)
2ike+4gad
?
17(3 3 5/4)
(μ=14)
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Great icosahedron.png
(3)10/4
2gike
Great icosicosidodecahedron.png
3/2.6.5.6
giid
U48
Great icosicosidodecahedron.png
3/2.6.5.6
giid
U48
Great icosidodecahedron.png
2(10/4.3.10/4.3)
2gid
Great truncated icosahedron.png
2(10/4.6.6)
2tiggy
?
18(3 5/2 5/4)
(μ=16)
Icosahedron.png
(3/2.5)5
cid
Ditrigonal dodecadodecahedron.png
5/3.5.5/3.5.5/3.5
ditdid
U41
Small stellated dodecahedron.png
(5/2.3)5/3
gacid
Icosidodecadodecahedron.png
5/3.6.5.6
ided
U44
Icosahedron.png
5(3/2.10/2.5.10/2)
ike+3gad
Small stellated dodecahedron.png
5(10/4.5/2.10/4.3)
3sissid+gike
Dodecadodecahedron.png
4(10/4.10/2.6)
did+sidhei+gidhei
?
19(5/2 2 3/2)
(μ=17)
Great icosidodecahedron.png
3.5/2.3.5/2
gid
U54
Great icosahedron.png
(3.3.3.3.3)/2
gike
U53
Great stellated dodecahedron.png
5/2.5/2.5/2
gissid
U52
Icosahedron.png
5(10/2.3.10/2)
2gad+ike
Uniform great rhombicosidodecahedron.png
5/3.4.3.4
qrid
U67
Small stellated dodecahedron.png
5(6/2.6/2.5/2)
2gike+sissid
Great ditrigonal icosidodecahedron.png
6(6/2.4.10/2)
2gidtid+rhom
?
20(5/2 5/3 5/3)
(μ=18)
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Small stellated dodecahedron.png
(5/2)10/2
2sissid
Dodecadodecahedron.png
2(5/2.10/2)2
2did
Great dodecahemidodecahedron.png
2(5/2.10/3.5/3.10/3)
2gidhid
U70*
Great dodecahemidodecahedron.png
2(5/2.10/3.5/3.10/3)
2gidhid
U70*
Small stellated truncated dodecahedron.png
2(10/3.10/3.10/2)
2quitsissid
?
21(3 5/3 3/2)
(μ=18)
Icosahedron.png
(310)/2
2ike
Small ditrigonal icosidodecahedron.png
5/2.3.5/2.3.5/2.3
sidtid
U30
Small ditrigonal icosidodecahedron.png
5/2.3.5/2.3.5/2.3
sidtid
U30
Small icosicosidodecahedron.png
5/2.6.3.6
siid
U31
Great icosihemidodecahedron.png
2(3.10/3.3/2.10/3)
2geihid
U71*
Small stellated dodecahedron.png
5(6/2.5/3.6/2.3)
sissid+3gike
Great dodecicosahedron.png
2(6/2.10/3.6)
giddy+20{6/2}
U63*
?
22(3 2 5/4)
(μ=19)
Icosidodecahedron.png
3.5.3.5
id
U24
Dodecahedron.png
5.5.5
doe
U23
Icosahedron.png
3.3.3.3.3
ike
U22
Truncated icosahedron.png
5.6.6
ti
U25
Great ditrigonal icosidodecahedron.png
3(3/2.4.5/4.4)
gicdatrid
Small stellated dodecahedron.png
5(10/4.10/4.3)
2sissid+gike
Rhombicosahedron.png
2(10/4.4.6)
ri+12{10/4}
U56*
?
23(5/2 2 5/4)
(μ=21)
Dodecadodecahedron.png
5/2.5.5/2.5
did
U36
Great dodecahedron.png
(5.5.5.5.5)/2
gad
U35
Small stellated dodecahedron.png
5/2.5/2.5/2.5/2.5/2
sissid
U34
Dodecahedron.png
3(10/2.5.10/2)
3doe
Ditrigonal dodecadodecahedron.png
3(5/3.4.5.4)
cadditradid
Great stellated dodecahedron.png
3(10/4.5/2.10/4)
3gissid
Ditrigonal dodecadodecahedron.png
6(10/4.4.10/2)
2ditdid+rhom
?
24(5/2 3/2 3/2)
(μ=22)
Small ditrigonal icosidodecahedron.png
5/2.3.5/2.3.5/2.3
sidtid
U30
Icosahedron.png
(310)/2
2ike
Small ditrigonal icosidodecahedron.png
5/2.3.5/2.3.5/2.3
sidtid
U30
Icosidodecahedron.png
2(3.10/2.3.10/2)
2id
Small stellated dodecahedron.png
5(5/3.6/2.3.6/2)
sissid+3gike
Small stellated dodecahedron.png
5(5/3.6/2.3.6/2)
sissid+3gike
Icosahedron.png
10(6/2.6/2.10/2)
4ike+2gad
Small retrosnub icosicosidodecahedron.png
(3.3.3.3.3.5/2)/2
sirsid
U72
25(2 5/3 3/2)
(μ=23)
Great icosahedron.png
(3.3.3.3.3)/2
gike
U53
Great icosidodecahedron.png
5/2.3.5/2.3
gid
U54
Great stellated dodecahedron.png
5/2.5/2.5/2
gissid
U52
Small ditrigonal icosidodecahedron.png
3(5/2.4.3.4)
sicdatrid
Great stellated truncated dodecahedron.png
10/3.3.10/3
quit gissid
U66
Small stellated dodecahedron.png
5(6/2.5/2.6/2)
2gike+sissid
Great rhombidodecahedron.png
2(6/2.10/3.4)
gird+20{6/2}
U73*
Great retrosnub icosidodecahedron.png
(3.3.3.5/2.3)/2
girsid
U74
26(5/3 5/3 3/2)
(μ=26)
Small stellated dodecahedron.png
(5/2.3)5/3
gacid
Small stellated dodecahedron.png
(5/2.3)5/3
gacid
Great stellated dodecahedron.png
(5/2)6/2
2gissid
Great dodecicosidodecahedron.png
5/2.10/3.3.10/3
gaddid
U61
Great dodecicosidodecahedron.png
5/2.10/3.3.10/3
gaddid
U61
Great icosidodecahedron.png
2(6/2.5/2.6/2.5/2)
2gid
Great stellated truncated dodecahedron.png
2(6/2.10/3.10/3)
2quitgissid
?
27(2 5/3 5/4)
(μ=27)
Great dodecahedron.png
(5.5.5.5.5)/2
gad
U35
Dodecadodecahedron.png
5/2.5.5/2.5
did
U36
Small stellated dodecahedron.png
5/2.5/2.5/2.5/2.5/2
sissid
U34
Rhombidodecadodecahedron.png
5/2.4.5.4
raded
U38
Small stellated truncated dodecahedron.png
10/3.5.10/3
quit sissid
U58
Great stellated dodecahedron.png
3(10/4.5/2.10/4)
3gissid
Great rhombidodecahedron.png
2(10/4.10/3.4)
gird+12{10/4}
U73*
?
28(2 3/2 5/4)
(μ=29)
Dodecahedron.png
5.5.5
doe
U23
Icosidodecahedron.png
3.5.3.5
id
U24
Icosahedron.png
3.3.3.3.3
ike
U22
Small rhombicosidodecahedron.png
3.4.5.4
srid
U27
Icosahedron.png
2(6/2.5.6/2)
2ike+gad
Small stellated dodecahedron.png
5(10/4.3.10/4)
2sissid+gike
Small ditrigonal icosidodecahedron.png
6(10/4.6/2.4/3)
2sidtid+rhom
?
29(5/3 3/2 5/4)
(μ=32)
Ditrigonal dodecadodecahedron.png
5/3.5.5/3.5.5/3.5
ditdid
U41
Icosahedron.png
(3.5)5/3
cid
Small stellated dodecahedron.png
(3.5/2)5/3
gacid
Great ditrigonal dodecicosidodecahedron.png
3.10/3.5.10/3
gidditdid
U42
Small ditrigonal icosidodecahedron.png
3(5/2.6/2.5.6/2)
sidtid+gidtid
Small stellated dodecahedron.png
5(10/4.3.10/4.5/2)
3sissid+gike
Great icosidodecahedron.png
4(10/4.6/2.10/3)
gid+geihid+gidhid
?
30(3/2 3/2 5/4)
(μ=34)
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Great ditrigonal icosidodecahedron.png
(3.5.3.5.3.5)/2
gidtid
U47
Great icosahedron.png
(3)10/4
2gike
Icosahedron.png
5(3.6/2.5.6/2)
3ike+gad
Icosahedron.png
5(3.6/2.5.6/2)
3ike+gad
Great icosidodecahedron.png
2(10/4.3.10/4.3)
2gid
Small stellated dodecahedron.png
10(10/4.6/2.6/2)
2sissid+4gike
?
31(3/2 5/4 5/4)
(μ=38)
Icosahedron.png
(3.5)5/3
cid
Dodecahedron.png
(5.5.5.5.5.5)/2
2doe
Icosahedron.png
(3.5)5/3
cid
Icosidodecahedron.png
2(5.6/2.5.6/2)
2id
Small ditrigonal icosidodecahedron.png
3(3.10/4.5/4.10/4)
sidtid+ditdid
Small ditrigonal icosidodecahedron.png
3(3.10/4.5/4.10/4)
sidtid+ditdid
Small stellated dodecahedron.png
10(10/4.10/4.6/2)
4sissid+2gike
Icosahedron.png
5(3.3.3.5/4.3.5/4)
4ike+2gad
32(5/4 5/4 5/4)
(μ=42)
Great dodecahedron.png
(5)10/4
2gad
Great dodecahedron.png
(5)10/4
2gad
Great dodecahedron.png
(5)10/4
2gad
Dodecadodecahedron.png
2(5.10/4.5.10/4)
2did
Dodecadodecahedron.png
2(5.10/4.5.10/4)
2did
Dodecadodecahedron.png
2(5.10/4.5.10/4)
2did
Great stellated dodecahedron.png
6(10/4.10/4.10/4)
2gissid
Icosahedron.png
3(3/2.5.3/2.5.3/2.5)
3cid

Non-Wythoffian

Hemi forms

Apart from the octahemioctahedron, the hemipolyhedra are generated as double coverings by the Wythoff construction. [3]

Tetrahemihexahedron.png
3/2.4.3.4
thah
U4
hemi(3 3/2 | 2)
Cubohemioctahedron.png
4/3.6.4.6
cho
U15
hemi(4 4/3 | 3)
Small dodecahemidodecahedron.png
5/4.10.5.10
sidhid
U51
hemi(5 5/4 | 5)
Small dodecahemicosahedron.png
5/2.6.5/3.6
sidhei
U62
hemi(5/2 5/3 | 3)
Great dodecahemidodecahedron.png
5/2.10/3.5/3.10/3
gidhid
U70
hemi(5/2 5/3 | 5/3)
  Octahemioctahedron.png
3/2.6.3.6
oho
U3
hemi(?)
Small icosihemidodecahedron.png
3/2.10.3.10
seihid
U49
hemi(3 3/2 | 5)
Great dodecahemicosahedron.png
5.6.5/4.6
gidhei
U65
hemi(5 5/4 | 3)
Great icosihemidodecahedron.png
3.10/3.3/2.10/3
geihid
U71
hemi(3 3/2 | 5/3)

Reduced forms

These polyhedra are generated with extra faces by the Wythoff construction.

WythoffPolyhedronExtra faces WythoffPolyhedronExtra faces WythoffPolyhedronExtra faces
3 2 3/2 | Cubohemioctahedron.png
4.6.4/3.6
cho
U15
4{6/2} 4 2 3/2 | Small rhombihexahedron.png
4.8.4/3.8/7
sroh
U18
8{6/2} 2 3/2 4/3 | Great rhombihexahedron.png
4.8/3.4/3.8/5
groh
U21
8{6/2}
5 5/2 2 | Small rhombidodecahedron.png
4.10.4/3.10/9
sird
U39
12{10/2} 5 3 3/2 | Small dodecicosahedron.png
10.6.10/9.6/5
siddy
U50
20{6/2} 3 5/2 2 | Rhombicosahedron.png
6.4.6/5.4/3
ri
U56
12{10/2}
5 5/2 3/2 | Small icosihemidodecahedron.png
3/2.10.3.10
seihid
U49
id + sidhid 5 5/2 3/2 | Small dodecahemidodecahedron.png
5/4.10.5.10
sidhid
U51
id + seihid 5 3 5/4 | Small dodecicosahedron.png
10.6.10/9.6/5
siddy
U50
12{10/4}
3 5/2 5/3 | Great dodecicosahedron.png
6.10/3.6/5.10/7
giddy
U63
12{10/2} 5 2 3/2 | Small rhombidodecahedron.png
4.10/3.4/3.10/9
sird
U39
20{6/2} 3 5/2 5/4 | Great dodecahemicosahedron.png
5.6.5/4.6
gidhei
U65
did + sidhei
3 5/2 5/4 | Small dodecahemicosahedron.png
5/2.6.5/3.6
sidhei
U62
did + gidhei 3 5/3 3/2 | Great dodecicosahedron.png
6.10/3.6/5.10/7
giddy
U63
20{6/2} 3 2 5/4 | Rhombicosahedron.png
6.4.6/5.4/3
ri
U56
12{10/4}
2 5/3 3/2 | Great rhombidodecahedron.png
4.10/3.4/3.10/7
gird
U73
20{6/2} 5/3 3/2 5/4 | Great icosihemidodecahedron.png
3.10/3.3/2.10/3
geihid
U71
gid + gidhid 5/3 3/2 5/4 | Great dodecahemidodecahedron.png
5/2.10/3.5/3.10/3
gidhid
U70
gid + geihid
2 5/3 5/4 | Great rhombidodecahedron.png
4.10/3.4/3.10/7
gird
U73
12{10/4}        

The tetrahemihexahedron (thah, U4) is also a reduced version of the {3/2}-cupola (retrograde triangular cupola, ratricu) by {6/2}. As such it may also be called the crossed triangular cuploid.

Many cases above are derived from degenerate omnitruncated polyhedra p q r |. In these cases, two distinct degenerate cases p q r | and p q s | can be generated from the same p and q; the result has faces {2p}'s, {2q}'s, and coinciding {2r}'s or {2s}'s respectively. These both yield the same nondegenerate uniform polyhedra when the coinciding faces are discarded, which Coxeter symbolised p q r
s
|. These cases are listed below:

Cubohemioctahedron.png
4.6.4/3.6
cho
U15
2 3 3/2
3/2
|
Small rhombihexahedron.png
4.8.4/3.8/7
sroh
U18
2 3 3/2
4/2
|
Small rhombidodecahedron.png
4.10.4/3.10/9
sird
U39
2 3 3/2
5/2
|
Great dodecicosahedron.png
6.10/3.6/5.10/7
giddy
U63
3 5/3 3/2
5/2
|
Rhombicosahedron.png
6.4.6/5.4/3
ri
U56
2 3 5/4
5/2
|
Great rhombihexahedron.png
4.8/3.4/3.8/5
groh
U21
2 4/3 3/2
4/2
|
Great rhombidodecahedron.png
4.10/3.4/3.10/7
gird
U73
2 5/3 3/2
5/4
|
Small dodecicosahedron.png
10.6.10/9.6/5
siddy
U50
3 5 3/2
5/4
|

In the small and great rhombihexahedra, the fraction 4/2 is used despite it not being in lowest terms. While 2 4 2 | and 2 4/3 2 | represent a single octagonal or octagrammic prism respectively, 2 4 4/2 | and 2 4/3 4/2 | represent three such prisms, which share some of their square faces (precisely those doubled up to produce {8/2}'s). These {8/2}'s appear with fourfold and not twofold rotational symmetry, justifying the use of 4/2 instead of 2. [2]

Other forms

These two uniform polyhedra cannot be generated at all by the Wythoff construction. This is the set of uniform polyhedra commonly described as the "non-Wythoffians". Instead of the triangular fundamental domains of the Wythoffian uniform polyhedra, these two polyhedra have tetragonal fundamental domains.

Skilling's figure is not given an index in Maeder's list due to it being an exotic uniform polyhedron, with ridges (edges in the 3D case) completely coincident. This is also true of some of the degenerate polyhedron included in the above list, such as the small complex icosidodecahedron. This interpretation of edges being coincident allows these figures to have two faces per edge: not doubling the edges would give them 4, 6, 8, 10 or 12 faces meeting at an edge, figures that are usually excluded as uniform polyhedra. Skilling's figure has 4 faces meeting at some edges.

(p q r s)| p q r s
(4.p.4.q.4.r.4.s)/2
| (p) q (r) s
(p3.4.q.4.r3.4.s.4)/2
(3/2 5/3 3 5/2) Great dirhombicosidodecahedron.png
(4.3/2.4.5/3.4.3.4.5/2)/2
gidrid
U75
Great disnub dirhombidodecahedron.png
(3/23.4.5/3.4.33.4.5/2.4)/2
gidisdrid
Skilling
Great snub dodecicosidodecahedron vertfig.png
Vertex figure of | 3 5/3 5/2
Great snub dodecicosidodecahedron.png
Great snub dodecicosidodecahedron
Great dirhombicosidodecahedron.png
Great dirhombicosidodecahedron
Great dirhombicosidodecahedron vertfig.png
Vertex figure of | 3/2 5/3 3 5/2
Great disnub dirhombidodecahedron.png
Great disnub dirhombidodecahedron
UC14-20 octahedra.png
Compound of twenty octahedra
UC19-20 tetrahemihexahedron.png
Compound of twenty tetrahemihexahedra
Great disnub dirhombidodecahedron vertfig.png
Vertex figure of |(3/2) 5/3 (3) 5/2

Both of these special polyhedra may be derived from the great snub dodecicosidodecahedron, | 3 5/3 5/2 (U64). This is a chiral snub polyhedron, but its pentagrams appear in coplanar pairs. Combining one copy of this polyhedron with its enantiomorph, the pentagrams coincide and may be removed. As the edges of this polyhedron's vertex figure include three sides of a square, with the fourth side being contributed by its enantiomorph, we see that the resulting polyhedron is in fact the compound of twenty octahedra. Each of these octahedra contain one pair of parallel faces that stem from a fully symmetric triangle of | 3 5/3 5/2, while the other three come from the original | 3 5/3 5/2's snub triangles. Additionally, each octahedron can be replaced by the tetrahemihexahedron with the same edges and vertices. Taking the fully symmetric triangles in the octahedra, the original coinciding pentagrams in the great snub dodecicosidodecahedra, and the equatorial squares of the tetrahemihexahedra together yields the great dirhombicosidodecahedron (Miller's monster). [2] Taking the snub triangles of the octahedra instead yields the great disnub dirhombidodecahedron (Skilling's figure). [4]

Euclidean tilings

The only plane triangles that tile the plane once over are (3 3 3), (4 2 4), and (3 2 6): they are respectively the equilateral triangle, the 45-45-90 right isosceles triangle, and the 30-60-90 right triangle. It follows that any plane triangle tiling the plane multiple times must be built up from multiple copies of one of these. The only possibility is the 30-30-120 obtuse isosceles triangle (3/2 6 6) = (6 2 3) + (2 6 3) tiling the plane twice over. Each triangle counts twice with opposite orientations, with a branch point at the 120° vertices. [5]

The tiling {∞,2} made from two apeirogons is not accepted, because its faces meet at more than one edge. Here ∞' denotes the retrograde counterpart to ∞.

The degenerate named forms are:

(p q r)q | p r
(p.r)q
p | q r
(q.r)p
r | p q
(q.p)r
q r | p
q.2p.r.2p
p r | q
p.2q.r.2q
p q | r
2r.q.2r.p
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
(6 3 2) Uniform tiling 63-t0.svg
6.6.6
hexat
Uniform tiling 63-t2.png
3.3.3.3.3.3
trat
Uniform tiling 63-t1.png
3.6.3.6
that
Uniform tiling 63-t01.png
3.12.12
toxat
Uniform tiling 63-t12.svg
6.6.6
hexat
Uniform tiling 63-t02.png
4.3.4.6
srothat
Uniform tiling 63-t012.png
4.6.12
grothat
Uniform tiling 63-snub.png
3.3.3.3.6
snathat
(4 4 2) Uniform tiling 44-t0.svg
4.4.4.4
squat
Uniform tiling 44-t2.png
4.4.4.4
squat
Uniform tiling 44-t1.png
4.4.4.4
squat
Uniform tiling 44-t01.png
4.8.8
tosquat
Uniform tiling 44-t12.png
4.8.8
tosquat
Uniform tiling 44-t02.svg
4.4.4.4
squat
Uniform tiling 44-t012.png
4.8.8
tosquat
Uniform tiling 44-snub.png
3.3.4.3.4
snasquat
(3 3 3) Uniform tiling 333-t0.png
3.3.3.3.3.3
trat
Uniform tiling 333-t1.svg
3.3.3.3.3.3
trat
Uniform tiling 333-t2.svg
3.3.3.3.3.3
trat
Uniform polyhedron-63-t1-1.svg
3.6.3.6
that
Uniform tiling 333-t12.png
3.6.3.6
that
Uniform tiling 333-t02.png
3.6.3.6
that
Uniform tiling 333-t012.png
6.6.6
hexat
Uniform tiling 333-snub.svg
3.3.3.3.3.3
trat
(∞ 2 2) Infinite prism tiling.png
4.4.∞
azip
Infinite prism tiling.png
4.4.∞
azip
Infinite prism tiling.png
4.4.∞
azip
Infinite antiprism.png
3.3.3.∞
azap
(3/2 3/2 3) Uniform tiling 333-t0.png
3.3.3.3.3.3
trat
Uniform tiling 333-t1.svg
3.3.3.3.3.3
trat
Uniform tiling 333-t2.svg
3.3.3.3.3.3
trat
∞-covered {3}∞-covered {3} Uniform tiling 333-t02.png
3.6.3.6
that
[degenerate]
?
(4 4/3 2) Uniform tiling 44-t0.svg
4.4.4.4
squat
Uniform tiling 44-t2.png
4.4.4.4
squat
Uniform tiling 44-t1.png
4.4.4.4
squat
Uniform tiling 44-t01.png
4.8.8
tosquat
Star tiling quitsquat.gif
4.8/5.8/5
quitsquat
∞-covered {4} Star tiling qrasquit.gif
4.8/3.8/7
qrasquit
?
(4/3 4/3 2) Uniform tiling 44-t0.svg
4.4.4.4
squat
Uniform tiling 44-t2.png
4.4.4.4
squat
Uniform tiling 44-t1.png
4.4.4.4
squat
Star tiling quitsquat.gif
4.8/5.8/5
quitsquat
Star tiling quitsquat.gif
4.8/5.8/5
quitsquat
Uniform tiling 44-t02.svg
4.4.4.4
squat
Star tiling quitsquat.gif
4.8/5.8/5
quitsquat
Star tiling rasisquat.gif
3.3.4/3.3.4/3
rasisquat
(3/2 6 2) Uniform tiling 63-t2.png
3.3.3.3.3.3
trat
Uniform tiling 63-t0.svg
6.6.6
hexat
Uniform tiling 63-t1.png
3.6.3.6
that
[degenerate] Uniform tiling 63-t01.png
3.12.12
toxat
Star tiling qrothat.gif
3/2.4.6/5.4
qrothat
[degenerate]
?
(3 6/5 2) Uniform tiling 63-t2.png
3.3.3.3.3.3
trat
Uniform tiling 63-t0.svg
6.6.6
hexat
Uniform tiling 63-t1.png
3.6.3.6
that
Uniform tiling 63-t12.svg
6.6.6
hexat
Star tiling quothat.gif
3/2.12/5.12/5
quothat
Star tiling qrothat.gif
3/2.4.6/5.4
qrothat
Star tiling quitothit.gif
4.6/5.12/5
quitothit
?
(3/2 6/5 2) Uniform tiling 63-t2.png
3.3.3.3.3.3
trat
Uniform tiling 63-t0.svg
6.6.6
hexat
Uniform tiling 63-t1.png
3.6.3.6
that
[degenerate] Star tiling quothat.gif
3/2.12/5.12/5
quothat
Uniform tiling 63-t02.png
3.4.6.4
srothat
[degenerate]
?
(3/2 6 6) Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
Uniform tiling 63-t0.svg
(6.6.6.6.6.6)/2
2hexat
Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
[degenerate] Star tiling shothat.gif
3/2.12.6.12
shothat
Star tiling shothat.gif
3/2.12.6.12
shothat
[degenerate]
?
(3 6 6/5) Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
Uniform tiling 63-t0.svg
(6.6.6.6.6.6)/2
2hexat
Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
∞-covered {6} Star tiling shothat.gif
3/2.12.6.12
shothat
Star tiling ghothat.gif
3.12/5.6/5.12/5
ghothat
Star tiling thotithit.gif
6.12/5.12/11
thotithit
?
(3/2 6/5 6/5) Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
Uniform tiling 63-t0.svg
(6.6.6.6.6.6)/2
2hexat
Compound 3 hexagonal tilings.png
(3/2.6)6
chatit
[degenerate] Star tiling ghothat.gif
3.12/5.6/5.12/5
ghothat
Star tiling ghothat.gif
3.12/5.6/5.12/5
ghothat
[degenerate]
?
(3 3/2 ∞) Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
Compound 3 hexagonal tilings.png
6.3/2.6.∞
chata
[degenerate] Star tiling tha.gif
3.∞.3/2.∞
tha
[degenerate]
?
(3 3 ∞') Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
Compound 3 hexagonal tilings.png
6.3/2.6.∞
chata
Compound 3 hexagonal tilings.png
6.3/2.6.∞
chata
[degenerate][degenerate]
?
(3/2 3/2 ∞') Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
Star tiling ditatha.gif
(3.∞)3/2 = (3/2.∞)3
ditatha
[degenerate][degenerate][degenerate][degenerate]
?
(4 4/3 ∞) Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Star tiling gossa.gif
8.4/3.8.∞
gossa
Star tiling sossa.gif
8/3.4.8/3.∞
sossa
Star tiling sha.gif
4.∞.4/3.∞
sha
Star tiling satsa.gif
8.8/3.∞
satsa
Star tiling snassa.gif
3.4.3.4/3.3.∞
snassa
(4 4 ∞') Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Star tiling gossa.gif
8.4/3.8.∞
gossa
Star tiling gossa.gif
8.4/3.8.∞
gossa
[degenerate][degenerate]
?
(4/3 4/3 ∞') Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Uniform tiling 44-t0.svg
(4.∞)4/3
cosa
Star tiling sossa.gif
8/3.4.8/3.∞
sossa
Star tiling sossa.gif
8/3.4.8/3.∞
sossa
[degenerate][degenerate]
?
(6 6/5 ∞) Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Star tiling ghaha.gif
6/5.12.∞.12
ghaha
Star tiling shaha.gif
6.12/5.∞.12/5
shaha
Star tiling hoha.gif
6.∞.6/5.∞
2hoha
Star tiling hatha.gif
12.12/5.∞
hatha
?
(6 6 ∞') Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Star tiling ghaha.gif
6/5.12.∞.12
ghaha
Star tiling ghaha.gif
6/5.12.∞.12
ghaha
[degenerate][degenerate]
?
(6/5 6/5 ∞') Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Compound 3 hexagonal tilings.png
(6.∞)6/5
cha
Star tiling shaha.gif
6.12/5.∞.12/5
shaha
Star tiling shaha.gif
6.12/5.∞.12/5
shaha
[degenerate][degenerate]
?

The tiling 6 6/5 | ∞ is generated as a double cover by Wythoff's construction:

Star tiling hoha.gif
6.∞.6/5.∞
hoha
hemi(6 6/5 | ∞)

Also there are a few tilings with the mixed symbol p q r
s
|:

Star tiling sraht.gif
4.12.4/3.12/11
sraht
2 6 3/2
3
|
Star tiling graht.gif
4.12/5.4/3.12/7
graht
2 6/5 3/2
3
|
Star tiling sost.gif
8/3.8.8/5.8/7
sost
4/3 4 2
|
Star tiling huht.gif
12/5.12.12/7.12/11
huht
6/5 6 3
|

There are also some non-Wythoffian tilings:

Tiling elongated 3 simple.svg
3.3.3.4.4
etrat
Star tiling retrat.gif
3.3.3.4/3.4/3
retrat

The set of uniform tilings of the plane is not proved to be complete, unlike the set of uniform polyhedra. The tilings above represent all found by Coxeter, Longuet-Higgins, and Miller in their 1954 paper on uniform polyhedra. They conjectured that the lists were complete: this was proven by Sopov in 1970 for the uniform polyhedra, but has not been proven for the uniform tilings. Indeed Branko Grünbaum, J. C. P. Miller, and G. C. Shephard list fifteen more non-Wythoffian uniform tilings in Uniform Tilings with Hollow Tiles (1981). (In two cases the same vertex figure results in two distinct tilings.) [6]

Tiling -4,8,83,4,i.png
4.8.8/3.4/3.∞
rorisassa
Tiling 4,8,83,-4,i.png
4.8/3.8.4/3.∞
rosassa
Tiling 4,8,-4,8,-4,i.png
4.8.4/3.8.4/3.∞
rarsisresa
rarsishra
Tiling 4,83,4,83,-4,i.png
4.8/3.4.8/3.4/3.∞
rassersa
rasishra
Tiling 3,-4,-4,3,i,3,i.png
3/2.∞.3/2.∞.3/2.4.4
rasrat
Tiling 3,4,4,3,i,3,i.png
3/2.∞.3/2.∞.3/2.4/3.4/3
sarat
Tiling 3,-125,-6,-125,3,i,3,i.png
3/2.∞.3/2.∞.3/2.12/5.6.12/5
sarshaha
Tiling 3,125,6,125,3,i,3,i.png
3/2.∞.3/2.∞.3/2.12/7.6/5.12/7
sishaha
Tiling 3,-12,6,-12,3,i,3,i.png
3/2.∞.3/2.∞.3/2.12.6/5.12
garshaha
Tiling 3,12,-6,12,3,i,3,i.png
3/2.∞.3/2.∞.3/2.12/11.6/5.12/11
gishaha
Tiling 3,4,4,3,4,4,3,i.png
3/2.∞.3/2.4/3.4/3.3/2.4/3.4/3
rodsat
Tiling 3,-4,-4,3,-4,-4,3,i.png
3/2.∞.3/2.4.4.3/2.4.4
roridsat
Tiling 3,4,4,3,-4,-4,3,i.png
3/2.∞.3/2.4.4.3/2.4/3.4/3
irdsat

There are two tilings each for the vertex figures 4.8.4/3.8.4/3.∞ and 4.8/3.4.8/3.4/3.∞; they use the same sets of vertices and edges, but have a different set of squares. There exists also a third tiling for each of these two vertex figure that is only pseudo-uniform (all vertices look alike, but they come in two symmetry orbits). Hence, for Euclidean tilings, the vertex configuration does not uniquely determine the tiling. [6] In the pictures below, the included squares with horizontal and vertical edges are marked with a central dot. A single square has edges highlighted. [6]

Grünbaum, Miller, and Shephard also list 33 uniform tilings using zigzags (skew apeirogons) as faces, ten of which are families that have a free parameter (the angle of the zigzag). In eight cases this parameter is continuous; in two, it is discrete. [6]

Hyperbolic tilings

The set of triangles tiling the hyperbolic plane is infinite. Moreover in hyperbolic space the fundamental domain does not have to be a simplex. Consequently a full listing of the uniform tilings of the hyperbolic plane cannot be given.

Even when restricted to convex tiles, it is possible to find multiple tilings with the same vertex configuration: see for example Snub order-6 square tiling#Related polyhedra and tiling. [7]

A few small convex cases (not involving ideal faces or vertices) have been given below:

(p q r)q | p r
(p.r)q
p | q r
(q.r)p
r | p q
(q.p)r
q r | p
q.2p.r.2p
p r | q
p.2q.r.2q
p q | r
2r.q.2r.p
p q r |
2r.2q.2p
| p q r
3.r.3.q.3.p
(7 3 2) Uniform tiling 73-t0.png
7.7.7
heat
Uniform tiling 73-t2.png
3.3.3.3.3.3.3
hetrat
Uniform tiling 73-t1.png
3.7.3.7
thet
Uniform tiling 73-t01.png
3.14.14
theat
Uniform tiling 73-t12.png
6.6.7
thetrat
Uniform tiling 73-t02.png
4.3.4.7
srothet
Uniform tiling 73-t012.png
4.6.14
grothet
Uniform tiling 73-snub.png
3.3.3.3.7
snathet
(8 3 2) Uniform tiling 83-t0.png
8.8.8
ocat
Uniform tiling 83-t2.png
3.3.3.3.3.3.3.3
otrat
Uniform tiling 83-t1.png
3.8.3.8
toct
Uniform tiling 83-t01.png
3.16.16
tocat
Uniform tiling 83-t12.png
6.6.8
totrat
Uniform tiling 83-t02.png
4.3.4.8
srotoct
Uniform tiling 83-t012.png
4.6.16
grotoct
Uniform tiling 83-snub.png
3.3.3.3.8
snatoct
(5 4 2) Uniform tiling 54-t0.png
5.5.5.5
peat
Uniform tiling 54-t2.png
4.4.4.4.4
pesquat
Uniform tiling 54-t1.png
4.5.4.5
tepet
Uniform tiling 54-t01.png
4.10.10
topeat
Uniform tiling 54-t12.png
5.8.8
topesquat
Uniform tiling 54-t02.png
4.4.4.5
srotepet
Uniform tiling 54-t012.png
4.8.10
grotepet
Uniform tiling 54-snub.png
3.3.4.3.5
stepet
(6 4 2) Uniform tiling 64-t0.png
6.6.6.6
shexat
Uniform tiling 64-t2.png
4.4.4.4.4.4
hisquat
Uniform tiling 64-t1.png
4.6.4.6
tehat
Uniform tiling 64-t01.png
4.12.12
toshexat
Uniform tiling 64-t12.png
6.8.8
thisquat
Uniform tiling 64-t02.png
4.4.4.6
srotehat
Uniform tiling 64-t012.png
4.8.12
grotehat
Uniform tiling 64-snub.png
3.3.4.3.6
snatehat
(5 5 2) Uniform tiling 552-t0.png
5.5.5.5.5
pepat
Uniform tiling 552-t2.png
5.5.5.5.5
pepat
Uniform tiling 552-t1.png
5.5.5.5
peat
Uniform tiling 552-t01.png
5.10.10
topepat
Uniform tiling 552-t12.png
5.10.10
topepat
Uniform tiling 552-t02.png
4.5.4.5
tepet
Uniform tiling 552-t012.png
4.10.10
topeat
Uniform tiling 552-snub.png
3.3.5.3.5
spepat
(6 6 2) Uniform tiling 66-t2.png
6.6.6.6.6.6
hihat
Uniform tiling 66-t0.png
6.6.6.6.6.6
hihat
Uniform tiling 66-t1.png
6.6.6.6
shexat
Uniform tiling 66-t12.png
6.12.12
thihat
Uniform tiling 66-t01.png
6.12.12
thihat
Uniform tiling 66-t02.png
4.6.4.6
tehat
Uniform tiling 66-t012.png
4.12.12
toshexat
Uniform tiling 66-snub.png
3.3.6.3.6
shihat
(4 3 3) Uniform tiling 433-t0.png
3.4.3.4.3.4
ditetsquat
Uniform tiling 433-t2.png
3.3.3.3.3.3.3.3
otrat
Uniform tiling 433-t1.png
3.4.3.4.3.4
ditetsquat
Uniform tiling 433-t01.png
3.8.3.8
toct
Uniform tiling 433-t12.png
6.3.6.4
sittitetrat
Uniform tiling 433-t02.png
6.3.6.4
sittitetrat
Uniform tiling 433-t012.png
6.6.8
totrat
Uniform tiling 433-snub.png
3.3.3.3.3.4
stititet
(4 4 3) Uniform tiling 443-t0.png
3.4.3.4.3.4.3.4
ditetetrat
Uniform tiling 443-t2.png
3.4.3.4.3.4.3.4
ditetetrat
Uniform tiling 443-t1.png
4.4.4.4.4.4
hisquat
Uniform tiling 443-t01.png
4.8.3.8
sittiteteat
Uniform tiling 443-t12.png
4.8.3.8
sittiteteat
Uniform tiling 443-t02.png
6.4.6.4
tehat
Uniform tiling 443-t012.png
6.8.8
thisquat
Uniform tiling 443-snub.png
3.3.3.4.3.4
stitetet
(4 4 4) Uniform tiling 444-t0.png
4.4.4.4.4.4.4.4
osquat
Uniform tiling 444-t2.png
4.4.4.4.4.4.4.4
osquat
Uniform tiling 444-t1.png
4.4.4.4.4.4
osquat
Uniform tiling 444-t01.png
4.8.4.8
teoct
Uniform tiling 444-t12.png
4.8.4.8
teoct
Uniform tiling 444-t02.png
4.8.4.8
teoct
Uniform tiling 444-t012.png
8.8.8
ocat
Uniform tiling 444-snub.png
3.4.3.4.3.4
ditetsquat

Related Research Articles

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Wythoff construction</span> In geometry, method for constructing a uniform polyhedron or plane tiling

In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.

<span class="mw-page-title-main">Wythoff symbol</span> Notation for tesselations

In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. Later the Coxeter diagram was developed to mark uniform polytopes and honeycombs in n-dimensional space within a fundamental simplex.

In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing a Coxeter group or sometimes a uniform polytope or uniform tiling constructed from the group.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

<span class="mw-page-title-main">Uniform star polyhedron</span> Self-intersecting uniform polyhedron

In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

<span class="mw-page-title-main">Uniform tilings in hyperbolic plane</span> Symmetric subdivision in hyperbolic geometry

In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

In geometry, a hemipolyhedron is a uniform star polyhedron some of whose faces pass through its center. These "hemi" faces lie parallel to the faces of some other symmetrical polyhedron, and their count is half the number of faces of that other polyhedron – hence the "hemi" prefix.

<span class="mw-page-title-main">Snub trioctagonal tiling</span>

In geometry, the order-3 snub octagonal tiling is a semiregular tiling of the hyperbolic plane. There are four triangles, one octagon on each vertex. It has Schläfli symbol of sr{8,3}.

In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle,, defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles. Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror. Up to 3 face types exist centered on the fundamental triangle corners. Right triangle domains can have as few as 1 face type, making regular forms, while general triangles have at least 2 triangle types, leading at best to a quasiregular tiling.

References

  1. The Bowers acronyms for the uniform polyhedra are given in R. Klitzing, Axial-Symmetrical Edge-Facetings of Uniform Polyhedra, Symmetry: Culture and Science Vol. 13, No. 3-4, 241-258, 2002
  2. 1 2 3 Coxeter, 1954
  3. Explicitly stated for the tetrahemihexahedron in Coxeter et al. 1954, pp. 415–6
  4. Skilling, 1974
  5. Coxeter, Regular Polytopes, p. 114
  6. 1 2 3 4 Grünbaum, Branko; Miller, J. C. P.; Shephard, G. C. (1981). "Uniform Tilings with Hollow Tiles". In Davis, Chandler; Grünbaum, Branko; Sherk, F. A. (eds.). The Geometric Vein: The Coxeter Festschrift. Springer. pp. 17–64. ISBN   978-1-4612-5650-2.
  7. Semi-regular tilings of the hyperbolic plane, Basudeb Datta and Subhojoy Gupta

Richard Klitzing: Polyhedra by

The tables are based on those presented by Klitzing at his site.