Great rhombihexahedron

Last updated
Great rhombihexahedron
Great rhombihexahedron.png
Type Uniform star polyhedron
Elements F = 18, E = 48
V = 24 (χ = 6)
Faces by sides12{4}+6{8/3}
Wythoff symbol 2 4/3 (3/2 4/2) |
Symmetry group Oh, [4,3], *432
Index references U 21, C 82, W 103
Dual polyhedron Great rhombihexacron
Vertex figure Great rhombihexahedron vertfig.png
4.8/3.4/3.8/5
Bowers acronym Groh
3D model of a great rhombihexahedron Great rhombihexahedron.stl
3D model of a great rhombihexahedron

In geometry, the great rhombihexahedron (or great rhombicube) is a nonconvex uniform polyhedron, indexed as U21. It has 18 faces (12 squares and 6 octagrams), 48 edges, and 24 vertices. [1] Its dual is the great rhombihexacron. [2] Its vertex figure is a crossed quadrilateral.

Contents

Orthogonal projections

Great rhombihexahedron ortho wireframes.png


Great rhombihexahedron.png
Traditional filling
Great rhombihexahedron 2.png
Modulo-2 filling

It shares the vertex arrangement with the convex truncated cube. It additionally shares its edge arrangement with the nonconvex great rhombicuboctahedron (having 12 square faces in common), and with the great cubicuboctahedron (having the octagrammic faces in common).

Truncated hexahedron.png
Truncated cube
Uniform great rhombicuboctahedron.png
Nonconvex great rhombicuboctahedron
Great cubicuboctahedron.png
Great cubicuboctahedron
Great rhombihexahedron.png
Great rhombihexahedron

It may be constructed as the exclusive or (blend) of three octagrammic prisms. Similarly, the small rhombihexahedron may be constructed as the exclusive or of three octagonal prisms.

Great rhombihexacron

Great rhombihexacron
DU21 great rhombihexacron.png
Type Star polyhedron
Face DU21 facets.png
Elements F = 24, E = 48
V = 18 (χ = 6)
Symmetry group Oh, [4,3], *432
Index references DU 21
dual polyhedron Great rhombihexahedron
3D model of a great rhombihexacron Great rhombihexacron.stl
3D model of a great rhombihexacron

The great rhombihexacron is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). [3] It has 24 identical bow-tie-shaped faces, 18 vertices, and 48 edges.

It has 12 outer vertices which have the same vertex arrangement as the cuboctahedron, and 6 inner vertices with the vertex arrangement of an octahedron.

As a surface geometry, it can be seen as visually similar to a Catalan solid, the disdyakis dodecahedron, with much taller rhombus-based pyramids joined to each face of a rhombic dodecahedron.

See also

Related Research Articles

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Cubohemioctahedron</span> Polyhedron with 10 faces

In geometry, the cubohemioctahedron is a nonconvex uniform polyhedron, indexed as U15. It has 10 faces (6 squares and 4 regular hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small rhombihexahedron</span> Polyhedron with 18 faces

In geometry, the small rhombihexahedron (or small rhombicube) is a nonconvex uniform polyhedron, indexed as U18. It has 18 faces (12 squares and 6 octagons), 48 edges, and 24 vertices. Its vertex figure is an antiparallelogram.

<span class="mw-page-title-main">Octahemioctahedron</span> Uniform star polyhedron with 12 faces

In geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Rhombicosahedron</span>

In geometry, the rhombicosahedron is a nonconvex uniform polyhedron, indexed as U56. It has 50 faces (30 squares and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is an antiparallelogram.

<span class="mw-page-title-main">Small rhombidodecahedron</span> Polyhedron with 42 faces

In geometry, the small rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U39. It has 42 faces (30 squares and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great cubicuboctahedron</span>

In geometry, the great cubicuboctahedron is a nonconvex uniform polyhedron, indexed as U14. It has 20 faces (8 triangles, 6 squares and 6 octagrams), 48 edges, and 24 vertices. Its square faces and its octagrammic faces are parallel to those of a cube, while its triangular faces are parallel to those of an octahedron: hence the name cubicuboctahedron. The great suffix serves to distinguish it from the small cubicuboctahedron, which also has faces in the aforementioned directions.

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Truncated great dodecahedron</span> Polyhedron with 24 faces

In geometry, the truncated great dodecahedron is a nonconvex uniform polyhedron, indexed as U37. It has 24 faces (12 pentagrams and 12 decagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{5,5/2}.

<span class="mw-page-title-main">Small stellated truncated dodecahedron</span> Polyhedron with 24 faces

In geometry, the small stellated truncated dodecahedron (or quasitruncated small stellated dodecahedron or small stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U58. It has 24 faces (12 pentagons and 12 decagrams), 90 edges, and 60 vertices. It is given a Schläfli symbol t{53,5}, and Coxeter diagram .

<span class="mw-page-title-main">Great dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great dodecicosidodecahedron (or great dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U61. It has 44 faces (20 triangles, 12 pentagrams and 12 decagrams), 120 edges and 60 vertices.

<span class="mw-page-title-main">Rhombidodecadodecahedron</span>

In geometry, the rhombidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U38. It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. It is given a Schläfli symbol t0,2{52,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron.

<span class="mw-page-title-main">Great dodecahemidodecahedron</span> Polyhedron with 18 faces

In geometry, the great dodecahemidodecahedron is a nonconvex uniform polyhedron, indexed as U70. It has 18 faces (12 pentagrams and 6 decagrams), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great dodecahemicosahedron</span> Polyhedron with 22 faces

In geometry, the great dodecahemicosahedron (or small dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U65. It has 22 faces (12 pentagons and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great rhombidodecahedron</span> Polyhedron with 42 faces

In geometry, the great rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U73. It has 42 faces (30 squares, 12 decagrams), 120 edges and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Great rhombihexacron</span> Polyhedron with 24 faces

In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-shaped faces, 18 vertices, and 48 edges.

<span class="mw-page-title-main">Crossed square cupola</span> Polyhedron with 10 faces

In geometry, the crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola. It can be obtained as a slice of the nonconvex great rhombicuboctahedron or quasirhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagram.

References

  1. Maeder, Roman. "21: great rhombihexahedron". MathConsult.{{cite web}}: CS1 maint: url-status (link)
  2. Weisstein, Eric W. "Great Rhombihexahedron". MathWorld .
  3. Weisstein, Eric W. "Great rhombihexacron". MathWorld .