Adventures Among the Toroids

Last updated
Adventures Among the Toroids: A study of orientable polyhedra with regular faces
AuthorBonnie Stewart
Subject Toroidal polyhedra with regular polygons as their faces
PublisherNumber One Tall Search Book
Publication date
1970

Adventures Among the Toroids: A study of orientable polyhedra with regular faces is a book on toroidal polyhedra that have regular polygons as their faces. It was written, hand-lettered, and illustrated by mathematician Bonnie Stewart, and self-published under the imprint "Number One Tall Search Book" in 1970. [1] [2] Stewart put out a second edition, again hand-lettered and self-published, in 1980. [3] [4] [5] Although out of print, the Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries. [6]

Contents

Topics

One of the Stewart toroids, formed as a ring of six hexagonal prisms Stewart toroid 6-hexprisms.png
One of the Stewart toroids, formed as a ring of six hexagonal prisms

The Platonic solids, known to antiquity, have all faces regular polygons, all symmetric to each other (each face can be taken to each other face by a symmetry of the polyhedron). However, if less symmetry is required, a greater number of polyhedra can be formed while having all faces regular. The convex polyhedra with all faces regular were catalogued in 1966 by Norman Johnson (after earlier study e.g. by Martyn Cundy and A. P. Rollett), and have come to be known as the Johnson solids. Adventures Among the Toroids extends the investigation of polyhedra with regular faces to non-convex polyhedra, and in particular to polyhedra of higher genus than the sphere. [1] [2] [4] Many of these polyhedra can be formed by gluing together smaller polyhedral pieces, carving polyhedral tunnels through them, or piling them into elaborate towers. [4] The toroidal polyhedra described in this book, formed from regular polygons with no self-intersections or flat angles, have come to be called Stewart toroids. [7]

A ring of octahedra discussed in the second edition of the book Eight octahedra toroid.png
A ring of octahedra discussed in the second edition of the book

The second edition is rewritten in a different page format, letter sized in landscape mode compared to the tall and narrow 5 inches (13 cm) by 13 inches (33 cm) page size of the first edition, [5] with two columns per page. [3] It includes new material on knotted polyhedra and on rings of regular octahedra and regular dodecahedra; as the ring of dodecahedra forms the outline of a golden rhombus, it can be extended to make skeletal pentagon-faced versions of the convex polyhedra formed from the golden rhombus, including the Bilinski dodecahedron, rhombic icosahedron, and rhombic triacontahedron. [3] The second edition also includes the Császár polyhedron and Szilassi polyhedron, toroidal polyhedra with non-regular faces but with pairwise adjacent vertices and faces respectively, and constructions by Alaeglu and Giese of polyhedra with irregular but congruent faces and with the same numbers of edges at every vertex. [5]

Audience and reception

The second edition describes its intended audience in an elaborate subtitle, a throwback to times when long subtitles were more common: "a study of Quasi-Convex, aplanar, tunneled orientable polyhedra of positive genus having regular faces with disjoint interiors, being an elaborate description and instructions for the construction of an enormous number or new and fascinating mathematical models of interest to students of euclidean geometry and topology, both secondary and collegiate, to designers, engineers and architects, to the scientific audience concerned with molecular and other structural problems, and to mathematicians, both professional and dilettante, with hundreds of exercises and search projects, many outlined for self-instruction". [4]

Reviewer H. S. M. Coxeter summarizes the book as "a remarkable combination of sound mathematics, art, instruction and humor", [1] while Henry Crapo calls it "highly recommended" to others interested in polyhedra and their juxtapositions. [4]

Mathematician Joseph A. Troccolo calls a method of constructing physical models of polyhedra developed in the book, using cardboard and rubber bands, "of inestimable value in the classroom". [8] One virtue of this technique is that it allows for the quick disassembly and reuse of its parts. [9]

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In elementary geometry, a polytope is a geometric object with flat sides (faces). It is a generalization in any number of dimensions of the three-dimensional polyhedron. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Toroidal polyhedron</span> Partition of a toroidal surface into polygons

In geometry, a toroidal polyhedron is a polyhedron which is also a toroid, having a topological genus of 1 or greater. Notable examples include the Császár and Szilassi polyhedra.

<span class="mw-page-title-main">Density (polytope)</span>

In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through. For polyhedra for which this count does not depend on the choice of the ray, and for which the central point is not itself on any facet, the density is given by this count of crossed facets.

<span class="mw-page-title-main">First stellation of the rhombic dodecahedron</span>

In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 overlapping triangular faces.

<span class="mw-page-title-main">Expanded icosidodecahedron</span>

The expanded icosidodecahedron is a polyhedron, constructed as an expanded icosidodecahedron. It has 122 faces: 20 triangles, 60 squares, 12 pentagons, and 30 rhombs. The 120 vertices exist at two sets of 60, with a slightly different distance from its center.

Convex Polyhedra is a book on the mathematics of convex polyhedra, written by Soviet mathematician Aleksandr Danilovich Aleksandrov, and originally published in Russian in 1950, under the title Выпуклые многогранники. It was translated into German by Wilhelm Süss as Konvexe Polyeder in 1958. An updated edition, translated into English by Nurlan S. Dairbekov, Semën Samsonovich Kutateladze and Alexei B. Sossinsky, with added material by Victor Zalgaller, L. A. Shor, and Yu. A. Volkov, was published as Convex Polyhedra by Springer-Verlag in 2005.

References

  1. 1 2 3 Coxeter, H. S. M., "Review of Adventures Among the Toroids (1st ed.)", Mathematical Reviews , MR   0275266
  2. 1 2 "Review of Adventures Among the Toroids (1st ed.)", zbMATH (in German), Zbl   0214.47703
  3. 1 2 3 Coxeter, H. S. M. (1982), "Review of Adventures Among the Toroids (2nd ed.)", Mathematical Reviews , MR   0588511
  4. 1 2 3 4 5 Crapo, Henry (1980), "Review of Adventures Among the Toroids (2nd ed.)" (PDF), Structural Topology, 5: 45–48
  5. 1 2 3 "Review of Adventures Among the Toroids (2nd ed.)", zbMATH , Zbl   0443.52005
  6. "Adventures Among the Toroids (unreviewed listing)", MAA Reviews, Mathematical Association of America , retrieved 2020-08-01
  7. Webb, Robert (2000), "Stella: Polyhedron Navigator", Symmetry: Culture and Science, 11 (1–4): 231–268
  8. Troccolo, Joseph A. (March 1976), "The algebra and geometry of polyhedra", The Mathematics Teacher, 69 (3): 220–224, JSTOR   27960432
  9. Prichett, Gordon D. (January 1976), "Three-dimensional discovery", The Mathematics Teacher, 69 (1): 5–10, JSTOR   27960351