Szilassi polyhedron

Last updated
Szilassi polyhedron
Szilassi polyhedron.svg
Type Toroidal polyhedron
Faces 7 hexagons
Edges 21
Vertices 14
Euler char. 0 (Genus 1)
Vertex configuration 6.6.6
Symmetry group C1, [ ]+, (11)
Dual polyhedron Császár polyhedron
PropertiesNon-convex

In geometry, the Szilassi polyhedron is a nonconvex polyhedron, topologically a torus, with seven hexagonal faces.

Contents

Coloring and symmetry

The 14 vertices and 21 edges of the Szilassi polyhedron form an embedding of the Heawood graph onto the surface of a torus. [1] Each face of this polyhedron shares an edge with each other face. As a result, it requires seven colours to colour all adjacent faces. This example shows that, on surfaces topologically equivalent to a torus, some subdivisions require seven colors, providing the lower bound for the seven colour theorem. The other half of the theorem states that all toroidal subdivisions can be colored with seven or fewer colors.

The Szilassi polyhedron has an axis of 180-degree symmetry. This symmetry swaps three pairs of congruent faces, leaving one unpaired hexagon that has the same rotational symmetry as the polyhedron.

Complete face adjacency

The tetrahedron and the Szilassi polyhedron are the only two known polyhedra in which each face shares an edge with each other face.

If a polyhedron with f faces is embedded onto a surface with h holes, in such a way that each face shares an edge with each other face, it follows by some manipulation of the Euler characteristic that

This equation is satisfied for the tetrahedron with h = 0 and f = 4, and for the Szilassi polyhedron with h = 1 and f = 7.

The next possible solution, h = 6 and f = 12, would correspond to a polyhedron with 44 vertices and 66 edges. However, it is not known whether such a polyhedron can be realized geometrically without self-crossings (rather than as an abstract polytope). More generally this equation can be satisfied precisely when f is congruent to 0, 3, 4, or 7 modulo 12. [2] [3]

Unsolved problem in mathematics:

Is there a non-convex polyhedron without self-intersections with more than seven faces, all of which share an edge with each other?

History

STL 3D model of a Szilassi polyhedron Szilassi polyhedron.stl
STL 3D model of a Szilassi polyhedron

The Szilassi polyhedron is named after Hungarian mathematician Lajos Szilassi, who discovered it in 1977. [4] [1] The dual to the Szilassi polyhedron, the Császár polyhedron, was discovered earlier by ÁkosCsászár  ( 1949 ); it has seven vertices, 21 edges connecting every pair of vertices, and 14 triangular faces. Like the Szilassi polyhedron, the Császár polyhedron has the topology of a torus. [5]

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with 8 triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Truncated cube</span>

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Heawood graph</span> Undirected graph with 14 vertices

In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.

<span class="mw-page-title-main">Tetrahemihexahedron</span>

In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin diagram is (although this is a double covering of the tetrahemihexahedron).

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Octahemioctahedron</span> Uniform star polyhedron with 12 faces

In geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Heptahedron</span> Type of three-dimensional shape

A heptahedron is a polyhedron having seven sides, or faces.

<span class="mw-page-title-main">Császár polyhedron</span> Toroidal polyhedron with 14 triangle faces

In geometry, the Császár polyhedron is a nonconvex toroidal polyhedron with 14 triangular faces.

<span class="mw-page-title-main">Regular map (graph theory)</span> Symmetric tessellation of a closed surface

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

<span class="mw-page-title-main">Toroidal polyhedron</span> Partition of a toroidal surface into polygons

In geometry, a toroidal polyhedron is a polyhedron which is also a toroid, having a topological genus of 1 or greater. Notable examples include the Császár and Szilassi polyhedra.

<span class="mw-page-title-main">Hendecahedron</span> Polyhedron with 11 faces

A hendecahedron is a polyhedron with 11 faces. There are numerous topologically distinct forms of a hendecahedron, for example the decagonal pyramid, and enneagonal prism.

<span class="mw-page-title-main">Lajos Szilassi</span>

Lajos Szilassi was a professor of mathematics at the University of Szeged who worked in projective and non-Euclidean geometry, applying his research to computer generated solutions of geometric problems.

Adventures Among the Toroids: A study of orientable polyhedra with regular faces is a book on toroidal polyhedra that have regular polygons as their faces. It was written, hand-lettered, and illustrated by mathematician Bonnie Stewart, and self-published under the imprint "Number One Tall Search Book" in 1970. Stewart put out a second edition, again hand-lettered and self-published, in 1980. Although out of print, the Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries.

References

  1. 1 2 Szilassi, Lajos (1986), "Regular toroids" (PDF), Structural Topology, 13: 69–80
  2. Jungerman, M.; Ringel, Gerhard (1980), "Minimal triangulations on orientable surfaces", Acta Mathematica, 145 (1–2): 121–154, doi: 10.1007/BF02414187
  3. Grünbaum, Branko; Szilassi, Lajos (2009), "Geometric realizations of special toroidal complexes", Contributions to Discrete Mathematics, 4 (1): 21–39, doi: 10.11575/cdm.v4i1.61986 , MR   2541986
  4. Gardner, Martin (1978), "In which a mathematical aesthetic is applied to modern minimal art", Mathematical Games, Scientific American , 239 (5): 22–32, doi:10.1038/scientificamerican1178-22, JSTOR   24955839
  5. Császár, Ákos (1949), "A polyhedron without diagonals", Acta Sci. Math. Szeged, 13: 140–142