Rectified truncated icosahedron

Last updated
Rectified truncated icosahedron
Rectified truncated icosahedron.png
Type Near-miss Johnson solid
Faces 92:
60 isosceles triangles
12 pentagons
20 hexagons
Edges 180
Vertices 90
Vertex configuration 3.6.3.6 (3.6)^2 vertex.svg
3.5.3.6 3.5.3.6 vertex.svg
Schläfli symbol rt{3,5}
Conway notation atI [1]
Symmetry group Ih, [5,3], (*532) order 120
Rotation group I, [5,3]+, (532), order 60
Dual polyhedron Rhombic enneacontahedron
Properties convex
Net
Rectified truncated icosahedron net.png

In geometry, the rectified truncated icosahedron is a convex polyhedron. It has 92 faces: 60 isosceles triangles, 12 regular pentagons, and 20 regular hexagons. It is constructed as a rectified, truncated icosahedron, rectification truncating vertices down to mid-edges.

Contents

As a near-miss Johnson solid, under icosahedral symmetry, the pentagons are always regular, although the hexagons, while having equal edge lengths, do not have the same edge lengths with the pentagons, having slightly different but alternating angles, causing the triangles to be isosceles instead. The shape is a symmetrohedron with notation I(1,2,*,[2])

Images

Jie Jiao Ban Zheng San Shi Er Mian Ti .gif

Dual

By Conway polyhedron notation, the dual polyhedron can be called a joined truncated icosahedron, jtI, but it is topologically equivalent to the rhombic enneacontahedron with all rhombic faces.

The rectified truncated icosahedron can be seen in sequence of rectification and truncation operations from the truncated icosahedron. Further truncation, and alternation operations creates two more polyhedra:

Name Truncated
icosahedron
Truncated
truncated
icosahedron
Rectified
truncated
icosahedron
Cantellated
truncated
icosahedron
Cantitruncated
truncated
icosahedron
Snub
truncated
icosahedron
Coxeter tI ttI rtIrrtItrtIsrtI
Conway atI etI btI stI
Image Uniform polyhedron-53-t12.svg Truncated truncated icosahedron.png Rectified truncated icosahedron.png Expanded truncated icosahedron.png Truncated rectified truncated icosahedron.png Snub rectified truncated icosahedron.png
Net Truncated icosahedron flat.png Truncated truncated icosahedron net.png Rectified truncated icosahedron net.png Expanded truncated icosahedron net.png Snub rectified truncated icosahedron net.png
Conway dtI = kD kD kdtI jtI otI mtI gtI
Dual Pentakis dodecahedron.png Kissed kissed dodecahedron.png Joined truncated icosahedron.png Ortho truncated icosahedron.png Meta truncated icosahedron.png Gyro truncated icosahedron.png
Net Pentakisdodecahedron net.png Kissed kissed dodecahedron net.png Rhombic enneacontahedron flat.png Ortho truncated icosahedron net.png Gyro truncated icosahedron net.png

See also

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Hexagonal bipyramid</span> Polyhedron; 2 hexagonal pyramids joined base-to-base

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

<span class="mw-page-title-main">Rectification (geometry)</span> Operation in Euclidean geometry

In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope.

<span class="mw-page-title-main">Dodecadodecahedron</span> Polyhedron with 24 faces

In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry and topology, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Truncated triakis tetrahedron</span> Near-miss Johnson solid with 16 faces

In geometry, the truncated triakis tetrahedron, or more precisely an order-6 truncated triakis tetrahedron, is a convex polyhedron with 16 faces: 4 sets of 3 pentagons arranged in a tetrahedral arrangement, with 4 hexagons in the gaps.

<span class="mw-page-title-main">Pentakis icosidodecahedron</span> Geodesic polyhedron with 80 faces

In geometry, the pentakis icosidodecahedron or subdivided icosahedron is a convex polyhedron with 80 triangular faces, 120 edges, and 42 vertices. It is a dual of the truncated rhombic triacontahedron.

<span class="mw-page-title-main">Truncated rhombicuboctahedron</span>

The truncated rhombicuboctahedron is a polyhedron, constructed as a truncation of the rhombicuboctahedron. It has 50 faces consisting of 18 octagons, 8 hexagons, and 24 squares. It can fill space with the truncated cube, truncated tetrahedron and triangular prism as a truncated runcic cubic honeycomb.

<span class="mw-page-title-main">Rectified truncated octahedron</span> Convex polyhedron with 38 faces

In geometry, the rectified truncated octahedron is a convex polyhedron, constructed as a rectified, truncated octahedron. It has 38 faces: 24 isosceles triangles, 6 squares, and 8 hexagons.

<span class="mw-page-title-main">Rectified truncated dodecahedron</span> Convex polyhedron with 92 faces

In geometry, the rectified truncated dodecahedron is a convex polyhedron, constructed as a rectified, truncated dodecahedron. It has 92 faces: 20 equilateral triangles, 60 isosceles triangles, and 12 decagons.

<span class="mw-page-title-main">Rectified truncated cube</span> Convex polyhedron with 38 faces

In geometry, the rectified truncated cube is a polyhedron, constructed as a rectified, truncated cube. It has 38 faces: 8 equilateral triangles, 24 isosceles triangles, and 6 octagons.

<span class="mw-page-title-main">Rectified truncated tetrahedron</span> Convex polyhedron with 20 faces

In geometry, the rectified truncated tetrahedron is a polyhedron, constructed as a rectified, truncated tetrahedron. It has 20 faces: 4 equilateral triangles, 12 isosceles triangles, and 4 regular hexagons.

<span class="mw-page-title-main">Chamfer (geometry)</span> Geometric operation which truncates the edges of polyhedra

In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

<span class="mw-page-title-main">Rectified prism</span>

In geometry, a rectified prism is one of an infinite set of polyhedra, constructed as a rectification of an n-gonal prism, truncating the vertices down to the midpoint of the original edges. In Conway polyhedron notation, it is represented as aPn, an ambo-prism. The lateral squares or rectangular faces of the prism become squares or rhombic faces, and new isosceles triangle faces are truncations of the original vertices.

References

  1. "PolyHédronisme".