Great duoantiprism

Last updated
Great duoantiprism
Type Uniform polychoron
Schläfli symbols s{5}s{5/3}
{5}⊗{5/3}
h{10}s{5/3}
s{5}h{10/3}
h{10}h{10/3}
Coxeter diagrams CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.png
CDel node.pngCDel 10.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.png
CDel node.pngCDel 10.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.png
Cells50 tetrahedra Tetrahedron.png
10 pentagonal antiprisms Pentagonal antiprism.png
10 pentagrammic crossed-antiprisms Pentagrammic crossed antiprism.png
Faces200 triangles
10 pentagons
10 pentagrams
Edges200
Vertices50
Vertex figure Great duoantiprism verf.png
star-gyrobifastigium
Symmetry group [5,2,5]+, order 50
[(5,2)+,10], order 100
[10,2+,10], order 200
PropertiesVertex-uniform
Great duoantiprism net.png
Net (overlapping in space)

In geometry, the great duoantiprism is the only uniform star-duoantiprism solution p = 5,q = 5/3, in 4-dimensional geometry. It has Schläfli symbol {5}⊗{5/3},s{5}s{5/3} or ht0,1,2,3{5,2,5/3}, Coxeter diagram CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.png, constructed from 10 pentagonal antiprisms, 10 pentagrammic crossed-antiprisms, and 50 tetrahedra.

Contents

Its vertices are a subset of those of the small stellated 120-cell.

Construction

The great duoantiprism can be constructed from a nonuniform variant of the 10-10/3 duoprism (a duoprism of a decagon and a decagram) where the decagram's edge length is around 1.618 (golden ratio) times the edge length of the decagon via an alternation process. The decagonal prisms alternate into pentagonal antiprisms, the decagrammic prisms alternate into pentagrammic crossed-antiprisms with new regular tetrahedra created at the deleted vertices. This is the only uniform solution for the p-q duoantiprism aside from the regular 16-cell (as a 2-2 duoantiprism).

Images

Great duoantiprism.png
stereographic projection, centered on one pentagrammic crossed-antiprism
Gudap orthogonal projection.png
Orthogonal projection, with vertices colored by overlaps, red, orange, yellow, green have 1, 2, 3,4 multiplicity.

Other names

Related Research Articles

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Duoprism</span> Cartesian product of two polytopes

In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Rectified 600-cell</span>

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.

<span class="mw-page-title-main">Rectified 5-cell</span> Uniform polychoron

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Order-5 cubic honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

<span class="mw-page-title-main">Grand antiprism</span> Uniform 4-polytope bounded by 320 cells

In geometry, the grand antiprism or pentagonal double antiprismoid is a uniform 4-polytope (4-dimensional uniform polytope) bounded by 320 cells: 20 pentagonal antiprisms, and 300 tetrahedra. It is an anomalous, non-Wythoffian uniform 4-polytope, discovered in 1965 by Conway and Guy. Topologically, under its highest symmetry, the pentagonal antiprisms have D5d symmetry and there are two types of tetrahedra, one with S4 symmetry and one with Cs symmetry.

<span class="mw-page-title-main">Cantellated 5-cell</span>

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Decagram (geometry)</span> 10-pointed star polygon

In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}.

<span class="mw-page-title-main">Stericated 5-simplexes</span>

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

<span class="mw-page-title-main">Pentellated 6-simplexes</span> Uniform 6-polytope

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.

<span class="mw-page-title-main">Prismatic uniform 4-polytope</span> Type of uniform 4-polytope in four-dimensional geography

In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

References