B4 polytope

Last updated
Orthographic projections in the B4 Coxeter plane
4-cube t0.svg
Tesseract
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-cube t3.svg
16-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract and 16-cell, with 16 and 8 vertices respectively.

Contents

Visualizations

They can be visualized as symmetric orthographic projections in Coxeter planes of the B5 Coxeter group, and other subgroups.

Symmetric orthographic projections of these 32 polytopes can be made in the B5, B4, B3, B2, A3, Coxeter planes. Ak has [k+1] symmetry, and Bk has [2k] symmetry.

These 32 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

The pictures are drawn as Schlegel diagram perspective projections, centered on the cell at pos. 3, with a consistent orientation, and the 16 cells at position 0 are shown solid, alternately colored.

#Name Coxeter plane projections Schlegel
diagrams
Net
B4
[8]
B3
[6]
B2
[4]
A3
[4]
Cube
centered
Tetrahedron
centered
18-cell or tesseract
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = {4,3,3}
4-cube t0.svg 4-cube t0 B3.svg 4-cube t0 B2.svg 4-cube t0 A3.svg Schlegel wireframe 8-cell.png 8-cell net.png
2 rectified 8-cell
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = r{4,3,3}
4-cube t1.svg 4-cube t1 B3.svg 4-cube t1 B2.svg 4-cube t1 A3.svg Schlegel half-solid rectified 8-cell.png Rectified tesseract net.png
3 16-cell
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = {3,3,4}
4-cube t3.svg 4-demicube t0 D4.svg 4-cube t3 B2.svg 4-cube t3 A3.svg Schlegel wireframe 16-cell.png 16-cell net.png
4 truncated 8-cell
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = t{4,3,3}
4-cube t01.svg 4-cube t01 B3.svg 4-cube t01 B2.svg 4-cube t01 A3.svg Schlegel half-solid truncated tesseract.png Truncated tesseract net.png
5 cantellated 8-cell
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = rr{4,3,3}
4-cube t02.svg 24-cell t03 B3.svg 4-cube t02 B2.svg 4-cube t02 A3.svg Schlegel half-solid cantellated 8-cell.png Small rhombated tesseract net.png
6 runcinated 8-cell
(also runcinated 16-cell)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = t03{4,3,3}
4-cube t03.svg 4-cube t03 B3.svg 4-cube t03 B2.svg 4-cube t03 A3.svg Schlegel half-solid runcinated 8-cell.png Schlegel half-solid runcinated 16-cell.png Small disprismatotesseractihexadecachoron net.png
7 bitruncated 8-cell
(also bitruncated 16-cell)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = 2t{4,3,3}
4-cube t12.svg 4-cube t12 B3.svg 4-cube t12 B2.svg 4-cube t12 A3.svg Schlegel half-solid bitruncated 8-cell.png Schlegel half-solid bitruncated 16-cell.png Tesseractihexadecachoron net.png
8 truncated 16-cell
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = t{3,3,4}
4-cube t23.svg 4-cube t23 B3.svg 4-cube t23 B2.svg 4-cube t23 A3.svg Schlegel half-solid truncated 16-cell.png Truncated hexadecachoron net.png
9 cantitruncated 8-cell
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = tr{3,3,4}
4-cube t012.svg 4-cube t012 B3.svg 4-cube t012 B2.svg 4-cube t012 A3.svg Schlegel half-solid cantitruncated 8-cell.png Great rhombated tesseract net.png
10 runcitruncated 8-cell
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = t013{4,3,3}
4-cube t013.svg 24-cell t02 B3.svg 4-cube t013 B2.svg 4-cube t013 A3.svg Schlegel half-solid runcitruncated 8-cell.png Prismatorhombated hexadecachoron net.png
11 runcitruncated 16-cell
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = t013{3,3,4}
4-cube t023.svg 4-cube t023 B3.svg 4-cube t023 B2.svg 4-cube t023 A3.svg Schlegel half-solid runcitruncated 16-cell.png Prismatorhombated tesseract net.png
12 omnitruncated 8-cell
(also omnitruncated 16-cell)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = t0123{4,3,3}
4-cube t0123.svg 24-cell t023 B3.svg 4-cube t0123 B2.svg 4-cube t0123 A3.svg Schlegel half-solid omnitruncated 8-cell.png Schlegel half-solid omnitruncated 16-cell.png Great disprismatotesseractihexadecachoron net.png
#Name Coxeter plane projections Schlegel
diagrams
Net
F4
[12]
B4
[8]
B3
[6]
B2
[4]
A3
[4]
Cube
centered
Tetrahedron
centered
13*rectified 16-cell
(Same as 24-cell )
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
r{3,3,4} = {3,4,3}
24-cell t3 F4.svg 24-cell t0 B4.svg 24-cell t3 B3.svg 24-cell t3 B2.svg 24-cell t0 B2.svg Schlegel half-solid rectified 16-cell.png 24-cell net.png
14*cantellated 16-cell
(Same as rectified 24-cell )
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
rr{3,3,4} = r{3,4,3}
24-cell t2 F4.svg 24-cell t1 B4.svg 24-cell t2 B3.svg 24-cell t2 B2.svg 24-cell t1 B2.svg Schlegel half-solid cantellated 16-cell.png Rectified icositetrachoron net.png
15*cantitruncated 16-cell
(Same as truncated 24-cell )
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
tr{3,3,4} = t{3,4,3}
24-cell t23 F4.svg 4-cube t123.svg 24-cell t23 B3.svg 4-cube t123 B2.svg 24-cell t01 B2.svg Schlegel half-solid cantitruncated 16-cell.png Truncated icositetrachoron net.png
#Name Coxeter plane projections Schlegel
diagrams
Net
F4
[12]
B4
[8]
B3
[6]
B2
[4]
A3
[4]
Cube
centered
Tetrahedron
centered
16alternated cantitruncated 16-cell
(Same as the snub 24-cell)
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
sr{3,3,4} = s{3,4,3}
24-cell h01 F4.svg 24-cell h01 B4.svg 24-cell h01 B3.svg 24-cell h01 B2.svg Schlegel half-solid alternated cantitruncated 16-cell.png Snub disicositetrachoron net.png

Coordinates

The tesseractic family of 4-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 4-polytopes. All coordinates correspond with uniform 4-polytopes of edge length 2.

Coordinates for uniform 4-polytopes in Tesseract/16-cell family
#Base pointName Coxeter diagram Vertices
3(0,0,0,1)2 16-cell CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png824-34!/3!
1(1,1,1,1) Tesseract CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png16244!/4!
13(0,0,1,1)2Rectified 16-cell (24-cell)CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png2424-24!/(2!2!)
2(0,1,1,1)2 Rectified tesseract CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png32244!/(3!2!)
8(0,0,1,2)2 Truncated 16-cell CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png4824-24!/2!
6(1,1,1,1) + (0,0,0,1)2 Runcinated tesseract CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png64244!/3!
4(1,1,1,1) + (0,1,1,1)2 Truncated tesseract CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png64244!/3!
14(0,1,1,2)2Cantellated 16-cell (rectified 24-cell)CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png96244!/(2!2!)
7(0,1,2,2)2 Bitruncated 16-cell CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png96244!/(2!2!)
5(1,1,1,1) + (0,0,1,1)2 Cantellated tesseract CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png96244!/(2!2!)
15(0,1,2,3)2cantitruncated 16-cell (truncated 24-cell)CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png192244!/2!
11(1,1,1,1) + (0,0,1,2)2 Runcitruncated 16-cell CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png192244!/2!
10(1,1,1,1) + (0,1,1,2)2 Runcitruncated tesseract CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png192244!/2!
9(1,1,1,1) + (0,1,2,2)2 Cantitruncated tesseract CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png192244!/2!
12(1,1,1,1) + (0,1,2,3)2 Omnitruncated 16-cell CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png384244!

Related Research Articles

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

E<sub>8</sub> polytope

In 8-dimensional geometry, there are 255 uniform polytopes with E8 symmetry. The three simplest forms are the 421, 241, and 142 polytopes, composed of 240, 2160 and 17280 vertices respectively.

E<sub>7</sub> polytope

In 7-dimensional geometry, there are 127 uniform polytopes with E7 symmetry. The three simplest forms are the 321, 231, and 132 polytopes, composed of 56, 126, and 576 vertices respectively.

E<sub>6</sub> polytope

In 6-dimensional geometry, there are 39 uniform polytopes with E6 symmetry. The two simplest forms are the 221 and 122 polytopes, composed of 27 and 72 vertices respectively.

<span class="mw-page-title-main">Truncated 5-simplexes</span>

In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a truncation of the regular 5-simplex.

A<sub>8</sub> polytope

In 8-dimensional geometry, there are 135 uniform polytopes with A8 symmetry. There is one self-dual regular form, the 8-simplex with 9 vertices.

B<sub>7</sub> polytope

In 7-dimensional geometry, there are 128 uniform polytopes with B7 symmetry. There are two regular forms, the 7-orthoplex, and 8-cube with 14 and 128 vertices respectively. The 7-demicube is added with half of the symmetry.

A<sub>7</sub> polytope

In 7-dimensional geometry, there are 71 uniform polytopes with A7 symmetry. There is one self-dual regular form, the 7-simplex with 8 vertices.

A<sub>6</sub> polytope

In 6-dimensional geometry, there are 35 uniform polytopes with A6 symmetry. There is one self-dual regular form, the 6-simplex with 7 vertices.

B<sub>6</sub> polytope

In 6-dimensional geometry, there are 64 uniform polytopes with B6 symmetry. There are two regular forms, the 6-orthoplex, and 6-cube with 12 and 64 vertices respectively. The 6-demicube is added with half the symmetry.

D<sub>6</sub> polytope

In 6-dimensional geometry, there are 47 uniform polytopes with D6 symmetry, 16 are unique, and 31 are shared with the B6 symmetry. There are two regular forms, the 6-orthoplex, and 6-demicube with 12 and 32 vertices respectively.

D<sub>7</sub> polytope

In 7-dimensional geometry, there are 95 uniform polytopes with D7 symmetry; 32 are unique, and 63 are shared with the B7 symmetry. There are two regular forms, the 7-orthoplex, and 7-demicube with 14 and 64 vertices respectively.

A<sub>5</sub> polytope

In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.

B<sub>5</sub> polytope

In 5-dimensional geometry, there are 31 uniform polytopes with B5 symmetry. There are two regular forms, the 5-orthoplex, and 5-cube with 10 and 32 vertices respectively. The 5-demicube is added as an alternation of the 5-cube.

D<sub>5</sub> polytope

In 5-dimensional geometry, there are 23 uniform polytopes with D5 symmetry, 8 are unique, and 15 are shared with the B5 symmetry. There are two special forms, the 5-orthoplex, and 5-demicube with 10 and 16 vertices respectively.

A<sub>4</sub> polytope

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

H<sub>4</sub> polytope Four-dimensional geometric objects

In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.

In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.

References

    Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
    Regular polygon Triangle Square p-gon Hexagon Pentagon
    Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
    Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
    Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
    Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
    Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
    Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
    Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
    Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
    Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
    Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds