Set of uniform antiprismatic prisms | |
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,p}×{} |
Coxeter diagram | |
Cells | 2 p-gonal antiprisms, 2 p-gonal prisms and 2p triangular prisms |
Faces | 4p {3}, 4p {4} and 4 {p} |
Edges | 10p |
Vertices | 4p |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [2p,2+,2], order 8p [(p,2)+,2], order 4p |
Properties | convex if the base is convex |
In 4-dimensional geometry, a uniform antiprismatic prism or antiduoprism is a uniform 4-polytope with two uniform antiprism cells in two parallel 3-space hyperplanes, connected by uniform prisms cells between pairs of faces. The symmetry of a p-gonal antiprismatic prism is [2p,2+,2], order 8p.
A p-gonal antiprismatic prism or p-gonal antiduoprism has 2 p-gonal antiprism, 2 p-gonal prism, and 2p triangular prism cells. It has 4p equilateral triangle, 4p square and 4 regular p-gon faces. It has 10p edges, and 4p vertices.
Schlegel diagram | Net |
There is an infinite series of convex uniform antiprismatic prisms, starting with the digonal antiprismatic prism is a tetrahedral prism, with two of the tetrahedral cells degenerated into squares. The triangular antiprismatic prism is the first nondegenerate form, which is also an octahedral prism. The remainder are unique uniform 4-polytopes.
Name | s{2,2}×{} | s{2,3}×{} | s{2,4}×{} | s{2,5}×{} | s{2,6}×{} | s{2,7}×{} | s{2,8}×{} | s{2,p}×{} |
---|---|---|---|---|---|---|---|---|
Coxeter diagram | ||||||||
Image | ||||||||
Vertex figure | ||||||||
Cells | 2 s{2,2} (2) {2}×{}={4} 4 {3}×{} | 2 s{2,3} 2 {3}×{} 6 {3}×{} | 2 s{2,4} 2 {4}×{} 8 {3}×{} | 2 s{2,5} 2 {5}×{} 10 {3}×{} | 2 s{2,6} 2 {6}×{} 12 {3}×{} | 2 s{2,7} 2 {7}×{} 14 {3}×{} | 2 s{2,8} 2 {8}×{} 16 {3}×{} | 2 s{2,p} 2 {p}×{} 2p {3}×{} |
Net |
There are also star forms following the set of star antiprisms, starting with the pentagram {5/2}:
Name | Coxeter diagram | Cells | Image | Net |
---|---|---|---|---|
Pentagrammic antiprismatic prism 5/2 antiduoprism | 2 pentagrammic antiprisms 2 pentagrammic prisms 10 triangular prisms | |||
Pentagrammic crossed antiprismatic prism 5/3 antiduoprism | 2 pentagrammic crossed antiprisms 2 pentagrammic prisms 10 triangular prisms | |||
... |
Square antiprismatic prism | |
---|---|
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,4}x{} |
Coxeter-Dynkin | |
Cells | 2 (3.3.3.4) 8 (3.4.4) 2 4.4.4 |
Faces | 16 {3}, 20 {4} |
Edges | 40 |
Vertices | 16 |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [(4,2)+,2], order 16 [8,2+,2], order 32 |
Properties | convex |
A square antiprismatic prism or square antiduoprism is a convex uniform 4-polytope. It is formed as two parallel square antiprisms connected by cubes and triangular prisms. The symmetry of a square antiprismatic prism is [8,2+,2], order 32. It has 16 triangle, 16 square and 4 square faces. It has 40 edges, and 16 vertices.
Schlegel diagram | Net |
Pentagonal antiprismatic prism | |
---|---|
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,5}x{} |
Coxeter-Dynkin | |
Cells | 2 (3.3.3.5) 10 (3.4.4) 2 (4.4.5) |
Faces | 20 {3}, 20 {4}, 4 {5} |
Edges | 50 |
Vertices | 20 |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [(5,2)+,2], order 20 [10,2+,2], order 40 |
Properties | convex |
A pentagonal antiprismatic prism or pentagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel pentagonal antiprisms connected by cubes and triangular prisms. The symmetry of a pentagonal antiprismatic prism is [10,2+,2], order 40. It has 20 triangle, 20 square and 4 pentagonal faces. It has 50 edges, and 20 vertices.
Schlegel diagram | Net |
Hexagonal antiprismatic prism | |
---|---|
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,6}x{} |
Coxeter-Dynkin | |
Cells | 2 (3.3.3.6) 12 (3.4.4) 2 (4.4.6) |
Faces | 24 {3}, 24 {4}, 4 {6} |
Edges | 60 |
Vertices | 24 |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [(2,6)+,2], order 24 [12,2+,2], order 48 |
Properties | convex |
A hexagonal antiprismatic prism or hexagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel hexagonal antiprisms connected by cubes and triangular prisms. The symmetry of a hexagonal antiprismatic prism is [12,2+,2], order 48. It has 24 triangle, 24 square and 4 hexagon faces. It has 60 edges, and 24 vertices.
Schlegel diagram | Net |
Heptagonal antiprismatic prism | |
---|---|
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,7}×{} |
Coxeter-Dynkin | |
Cells | 2 (3.3.3.7) 14 (3.4.4) 2 (4.4.7) |
Faces | 28 {3}, 28 {4}, 4 {7} |
Edges | 70 |
Vertices | 28 |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [(7,2)+,2], order 28 [14,2+,2], order 56 |
Properties | convex |
A heptagonal antiprismatic prism or heptagonal antiduoprism is a convex uniform 4-polytope. It is formed as two parallel heptagonal antiprisms connected by cubes and triangular prisms. The symmetry of a heptagonal antiprismatic prism is [14,2+,2], order 56. It has 28 triangle, 28 square and 4 heptagonal faces. It has 70 edges, and 28 vertices.
Schlegel diagram | Net |
Octagonal antiprismatic prism | |
---|---|
Type | Prismatic uniform 4-polytope |
Schläfli symbol | s{2,8}×{} |
Coxeter-Dynkin | |
Cells | 2 (3.3.3.8) 16 (3.4.4) 2 (4.4.8) |
Faces | 32 {3}, 32 {4}, 4 {8} |
Edges | 80 |
Vertices | 32 |
Vertex figure | Trapezoidal pyramid |
Symmetry group | [(8,2)+,2], order 32 [16,2+,2], order 64 |
Properties | convex |
A octagonal antiprismatic prism or octagonal antiduoprism is a convex uniform 4-polytope (four-dimensional polytope). It is formed as two parallel octagonal antiprisms connected by cubes and triangular prisms. The symmetry of an octagonal antiprismatic prism is [16,2+,2], order 64. It has 32 triangle, 32 square and 4 octagonal faces. It has 80 edges, and 32 vertices.
Schlegel diagram | Net |
In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.
In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.
In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.
In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher.
In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.
In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube.
In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.
In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.
In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.
In geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface of such a polygon is not uniquely defined.
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation in Euclidean 3-space. It is composed entirely of triangular prisms.
In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.
In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.
In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.