Cantellated 5-cell

Last updated
4-simplex t0.svg
5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-simplex t02.svg
Cantellated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4-simplex t012.svg
Cantitruncated 5-cell
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in A4 Coxeter plane

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation, up to edge-planing) of the regular 5-cell.

Contents

Cantellated 5-cell

Cantellated 5-cell
Schlegel half-solid cantellated 5-cell.png
Schlegel diagram with
octahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,2{3,3,3}
rr{3,3,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells205 Cuboctahedron.png (3.4.3.4)
5 Octahedron.png (3.3.3.3)
10 Triangular prism.png (3.4.4)
Faces8050{3}
30{4}
Edges90
Vertices30
Vertex figure Cantellated 5-cell verf.png
Square wedge
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 3 4 5
Net Small rhombated pentachoron net.png
Net

The cantellated 5-cell or small rhombated pentachoron is a uniform 4-polytope. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.

Alternate names

Configuration

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time. [1]

Elementfkf0f1f2f3
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf030241422221
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf1230*1200210
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.png2*600111111
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf233010***200
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.png422*30**110
CDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.png303**20*101
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png303***20011
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.pngf312121246405**
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png6360302*10*
CDel node x.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png60120044**5

Images

orthographic projections
Ak
Coxeter plane
A4A3A2
Graph 4-simplex t02.svg 4-simplex t02 A3.svg 4-simplex t02 A2.svg
Dihedral symmetry [5][4][3]
Cantel pentachoron1.png
Wireframe
Cantel pentachoron2.png
Ten triangular prisms colored green
Cantel pentachoron3.png
Five octahedra colored blue

Coordinates

The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:

The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:

(0,0,1,1,2)

This construction is from the positive orthant facet of the cantellated 5-orthoplex.

The convex hull of two cantellated 5-cells in opposite positions is a nonuniform polychoron composed of 100 cells: three kinds of 70 octahedra (10 rectified tetrahedra, 20 triangular antiprisms, 40 triangular antipodiums), 30 tetrahedra (as tetragonal disphenoids), and 60 vertices. Its vertex figure is a shape topologically equivalent to a cube with a triangular prism attached to one of its square faces.

Birhombatodecachoron vertex figure.png
Vertex figure

Cantitruncated 5-cell

Cantitruncated 5-cell
Schlegel half-solid cantitruncated 5-cell.png
Schlegel diagram with Truncated tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,1,2{3,3,3}
tr{3,3,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells205 Truncated octahedron.png (4.6.6)
10 Triangular prism.png (3.4.4)
 5 Truncated tetrahedron.png (3.6.6)
Faces8020{3}
30{4}
30{6}
Edges120
Vertices60
Vertex figure Cantitruncated 5-cell verf.png
sphenoid
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 6 7 8
Net Great rhombated pentachoron net.png
Net

The cantitruncated 5-cell or great rhombated pentachoron is a uniform 4-polytope. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.

Configuration

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time. [2]

Elementfkf0f1f2f3
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf0601121221211
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf1230**1200210
CDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.png2*30*1020201
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.png2**600111111
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node x.pngf2633010***200
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node x.png4202*30**110
CDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.png6033**20*101
CDel node x.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png3003***20011
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node x.pngf32412121246405**
CDel node 1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png63060302*10*
CDel node x.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png1206120044**5

Alternative names

Images

orthographic projections
Ak
Coxeter plane
A4A3A2
Graph 4-simplex t012.svg 4-simplex t012 A3.svg 4-simplex t012 A2.svg
Dihedral symmetry [5][4][3]
Cantitruncated 5 cell.png
Stereographic projection with its 10 triangular prisms.

Cartesian coordinates

The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:

These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:

(0,0,1,2,3)

This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.

A double symmetry construction can be made by placing truncated tetrahedra on the truncated octahedra, resulting in a nonuniform polychoron with 10 truncated tetrahedra, 20 hexagonal prisms (as ditrigonal trapezoprisms), two kinds of 80 triangular prisms (20 with D3h symmetry and 60 C2v-symmetric wedges), and 30 tetrahedra (as tetragonal disphenoids). Its vertex figure is topologically equivalent to the octahedron.

Bicantitruncatodecachoron vertex figure.png
Vertex figure

These polytopes are art of a set of 9 Uniform 4-polytopes constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
2t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3}tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3}t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Schlegel
diagram
Schlegel wireframe 5-cell.png Schlegel half-solid truncated pentachoron.png Schlegel half-solid rectified 5-cell.png Schlegel half-solid cantellated 5-cell.png Schlegel half-solid bitruncated 5-cell.png Schlegel half-solid cantitruncated 5-cell.png Schlegel half-solid runcinated 5-cell.png Schlegel half-solid runcitruncated 5-cell.png Schlegel half-solid omnitruncated 5-cell.png
A4
Coxeter plane
Graph
4-simplex t0.svg 4-simplex t01.svg 4-simplex t1.svg 4-simplex t02.svg 4-simplex t12.svg 4-simplex t012.svg 4-simplex t03.svg 4-simplex t013.svg 4-simplex t0123.svg
A3 Coxeter plane
Graph
4-simplex t0 A3.svg 4-simplex t01 A3.svg 4-simplex t1 A3.svg 4-simplex t02 A3.svg 4-simplex t12 A3.svg 4-simplex t012 A3.svg 4-simplex t03 A3.svg 4-simplex t013 A3.svg 4-simplex t0123 A3.svg
A2 Coxeter plane
Graph
4-simplex t0 A2.svg 4-simplex t01 A2.svg 4-simplex t1 A2.svg 4-simplex t02 A2.svg 4-simplex t12 A2.svg 4-simplex t012 A2.svg 4-simplex t03 A2.svg 4-simplex t013 A2.svg 4-simplex t0123 A2.svg

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Runcinated 5-cell</span>

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Rectified 5-cell</span> Uniform polychoron

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Icosahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.

<span class="mw-page-title-main">Truncated 24-cells</span>

In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Rectified 24-cell</span>

In geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope, which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra.

<span class="mw-page-title-main">Cantellated 24-cells</span>

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span>

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Stericated 5-simplexes</span>

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

<span class="mw-page-title-main">Cantellated 5-simplexes</span>

In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

References

  1. Klitzing, Richard. "o3x4x3o - deca".
  2. Klitzing, Richard. "x3x4x3o - grip".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds