Omnitruncated 5-simplex honeycomb

Last updated
Omnitruncated 5-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Omnitruncated simplectic honeycomb
Schläfli symbol t012345{3[6]}
Coxeter–Dynkin diagram CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
5-face types t01234{3,3,3,3} 5-simplex t01234.svg
4-face types t0123{3,3,3} Schlegel half-solid omnitruncated 5-cell.png
{}×t012{3,3} Truncated octahedral prism.png
{6}×{6} 6-6 duoprism.png
Cell types t012{3,3} Truncated octahedron.png
{4,3} Tetragonal prism.png
{}x{6} Hexagonal prism.png
Face types {4}
{6}
Vertex figure Omnitruncated 5-simplex honeycomb verf.png
Irr. 5-simplex
Symmetry ×12, [6[3[6]]]
Properties vertex-transitive

In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 5-simplex facets.

Contents

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

A5* lattice

The A*
5
lattice (also called A6
5
) is the union of six A5 lattices, and is the dual vertex arrangement to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-simplex.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png

This honeycomb is one of 12 unique uniform honeycombs [1] constructed by the Coxeter group. The extended symmetry of the hexagonal diagram of the Coxeter group allows for automorphisms that map diagram nodes (mirrors) on to each other. So the various 12 honeycombs represent higher symmetries based on the ring arrangement symmetry in the diagrams:

A5 honeycombs
Hexagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
a1 Hexagon symmetry a1.png [3[6]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png
d2 Hexagon symmetry d2.png <[3[6]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel split2.pngCDel node c4.png×21CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 1 , CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
p2 Hexagon symmetry p2.png [[3[6]]]CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel 3ab.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c4.png×22CDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.png 2 , CDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node 1.png
i4 Hexagon symmetry i4.png [<[3[6]]>]CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×21×22CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png, CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
d6 Hexagon symmetry d6.png <3[3[6]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c2.png×61CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
r12 Hexagon symmetry r12.png [6[3[6]]]CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.png×12CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png 3

Projection by folding

The omnitruncated 5-simplex honeycomb can be projected into the 3-dimensional omnitruncated cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same 3-space vertex arrangement:

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png

See also

Regular and uniform honeycombs in 5-space:

Notes

  1. mathworld: Necklace, OEIS sequenceA000029 13-1 cases, skipping one with zero marks

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En−1Uniform (n−1)-honeycomb 0[n] δn hδn qδn 1k22k1k21