Cyclotruncated 5-simplex honeycomb

Last updated
Cyclotruncated 5-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Cyclotruncated simplectic honeycomb
Schläfli symbol t0,1{3[6]}
Coxeter diagram CDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.png or CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
5-face types {3,3,3,3} 5-simplex t0.svg
t{3,3,3,3} 5-simplex t01.svg
2t{3,3,3,3} 5-simplex t12.svg
4-face types {3,3,3} 4-simplex t0.svg
t{3,3,3} 4-simplex t01.svg
Cell types {3,3} 3-simplex t0.svg
t{3,3} 3-simplex t01.svg
Face types {3} 2-simplex t0.svg
t{3} 2-simplex t01.svg
Vertex figure Truncated 5-simplex honeycomb verf.png
Elongated 5-cell antiprism
Coxeter groups ×22, [[3[6]]]
Properties vertex-transitive

In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.

Contents

Structure

Its vertex figure is an elongated 5-cell antiprism, two parallel 5-cells in dual configurations, connected by 10 tetrahedral pyramids (elongated 5-cells) from the cell of one side to a point on the other. The vertex figure has 8 vertices and 12 5-cells.

It can be constructed as six sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-cell honeycomb divisions on each hyperplane.

This honeycomb is one of 12 unique uniform honeycombs [1] constructed by the Coxeter group. The extended symmetry of the hexagonal diagram of the Coxeter group allows for automorphisms that map diagram nodes (mirrors) on to each other. So the various 12 honeycombs represent higher symmetries based on the ring arrangement symmetry in the diagrams:

A5 honeycombs
Hexagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
a1 Hexagon symmetry a1.png [3[6]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png
d2 Hexagon symmetry d2.png <[3[6]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel split2.pngCDel node c4.png×21CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 1 , CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png, CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
p2 Hexagon symmetry p2.png [[3[6]]]CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel 3ab.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c4.png×22CDel node.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node.png 2 , CDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes 10lru.pngCDel split2.pngCDel node 1.png
i4 Hexagon symmetry i4.png [<[3[6]]>]CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png×21×22CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png, CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
d6 Hexagon symmetry d6.png <3[3[6]]>CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c2.png×61CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node.png
r12 Hexagon symmetry r12.png [6[3[6]]]CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.png×12CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png 3

See also

Regular and uniform honeycombs in 5-space:

Notes

  1. mathworld: Necklace, OEIS sequenceA000029 13-1 cases, skipping one with zero marks

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21