quarter 8-cubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 8-honeycomb |
Family | Quarter hypercubic honeycomb |
Schläfli symbol | q{4,3,3,3,3,3,3,4} |
Coxeter diagram | = |
7-face type | h{4,36}, h6{4,36}, {3,3}×{32,1,1} duoprism {31,1,1}×{31,1,1} duoprism |
Vertex figure | |
Coxeter group | ×2 = [[31,1,3,3,3,3,31,1]] |
Dual | |
Properties | vertex-transitive |
In seven-dimensional Euclidean geometry, the quarter 8-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 8-demicubic honeycomb, and a quarter of the vertices of a 8-cube honeycomb. [1] Its facets are 8-demicubes h{4,36}, pentic 8-cubes h6{4,36}, {3,3}×{32,1,1} and {31,1,1}×{31,1,1} duoprisms.
Regular and uniform honeycombs in 8-space:
In geometry, a five-dimensional polytope is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell.
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.
In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.
In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγn for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n(n−1)-demicubes, and 2n(n−1)-simplex facets are formed in place of the deleted vertices.
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.
The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.
The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.
In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.
In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb. Its facets are 5-demicubes and runcinated 5-demicubes.
In seven-dimensional Euclidean geometry, the quarter 7-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 7-demicubic honeycomb, and a quarter of the vertices of a 7-cube honeycomb. Its facets are 7-demicubes, pentellated 7-demicubes, and {31,1,1}×{3,3} duoprisms.
In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 6-demicubic honeycomb, and a quarter of the vertices of a 6-cube honeycomb. Its facets are 6-demicubes, stericated 6-demicubes, and {3,3}×{3,3} duoprisms.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | {3[11]} | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |