Stericantitruncated tesseractic honeycomb | |
---|---|
(No image) | |
Type | Uniform honeycomb |
Schläfli symbol | t0,1,2,4{4,3,3,4} |
Coxeter-Dynkin diagrams | |
4-face type | runcitruncated 16-cell Contents |
Cell type | Truncated cuboctahedron Rhombicuboctahedron Truncated tetrahedron Octagonal prism Hexagonal prism Cube Triangular prism |
Face type | {3}, {4}, {6}, {8} |
Vertex figure | irr. square pyramid pyramid |
Coxeter groups | , [4,3,3,4] |
Properties | Vertex transitive |
In four-dimensional Euclidean geometry, the stericantitruncated tesseractic honeycomb is a uniform space-filling honeycomb. It is composed of runcitruncated 16-cell, cantitruncated tesseract, rhombicuboctahedral prism, truncated cuboctahedral prism, and 4-8 duoprism facets, arranged around an irregular 5-cell vertex figure.
The [4,3,3,4],
C4 honeycombs | |||
---|---|---|---|
Extended symmetry | Extended diagram | Order | Honeycombs |
[4,3,3,4]: | ×1 | ||
[[4,3,3,4]] | ×2 | ||
[(3,3)[1+,4,3,3,4,1+]] ↔ [(3,3)[31,1,1,1]] ↔ [3,4,3,3] | ↔ ↔ | ×6 |
Regular and uniform honeycombs in 4-space:
In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells.
In four-dimensional Euclidean geometry, the truncated 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by 24-cell and truncated 16-cell facets.
In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.
In four-dimensional Euclidean geometry, the steriruncitruncated tesseractic honeycomb is a uniform space-filling honeycomb.
In four-dimensional Euclidean geometry, the stericantellated tesseractic honeycomb is a uniform space-filling honeycomb.
In four-dimensional Euclidean geometry, the omnitruncated tesseractic honeycomb is a uniform space-filling honeycomb. It has omnitruncated tesseract, truncated cuboctahedral prism, and 8-8 duoprism facets in an irregular 5-cell vertex figure.
In four-dimensional Euclidean geometry, the truncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a truncation of a tesseractic honeycomb creating truncated tesseracts, and adding new 16-cell facets at the original vertices.
In four-dimensional Euclidean geometry, the cantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a cantellation of a tesseractic honeycomb creating cantellated tesseracts, and new 24-cell and octahedral prism facets at the original vertices.
In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a runcination of a tesseractic honeycomb creating runcinated tesseracts, and new tesseract, rectified tesseract and cuboctahedral prism facets.
In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcicantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcicantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the stericantic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the steriruncicantic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the cantellated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantellation of the regular 24-cell honeycomb, containing rectified tesseract, cantellated 24-cell, and tetrahedral prism cells.
In four-dimensional Euclidean geometry, the cantitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantitruncation of the regular 24-cell honeycomb, containing truncated tesseract, cantitruncated 24-cell, and tetrahedral prism cells.
In four-dimensional Euclidean geometry, the runcinated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a runcination of the regular 24-cell honeycomb, containing runcinated 24-cell, 24-cell, octahedral prism, and 3-3 duoprism cells.
In four-dimensional Euclidean geometry, the stericated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a sterication of the regular 24-cell honeycomb, containing 24-cell, 16-cell, octahedral prism, tetrahedral prism, and 3-3 duoprism cells.
In four-dimensional Euclidean geometry, the steritruncated 16-cell honeycomb is a uniform space-filling honeycomb, with runcinated 24-cell, truncated 16-cell, octahedral prism, 3-6 duoprism, and truncated tetrahedral prism cells.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |