Birectified 16-cell honeycomb | |
---|---|
(No image) | |
Type | Uniform honeycomb |
Schläfli symbol | t2{3,3,4,3} |
Coxeter-Dynkin diagram | |
4-face type | Rectified tesseract Rectified 24-cell |
Cell type | Cube Cuboctahedron Tetrahedron |
Face type | {3}, {4} |
Vertex figure | {3}×{3} duoprism |
Coxeter group | = [3,3,4,3] = [4,3,31,1] = [31,1,1,1] |
Dual | ? |
Properties | vertex-transitive |
In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb (or runcic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.
A four-dimensional space or 4D space is a mathematical extension of the concept of three-dimensional or 3D space. Three-dimensional space is the simplest possible generalization of the observation that one only needs three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world. For example, the volume of a rectangular box is found by measuring its length, width, and height.
Euclidean geometry is a mathematical system attributed to Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.
A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries.
There are 3 different symmetry constructions, all with 3-3 duoprism vertex figures. The symmetry doubles on in three possible ways, while contains the highest symmetry.
In geometry of 4 dimensions or higher, a duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are 2 (polygon) or higher.
Affine Coxeter group | [3,3,4,3] | [4,3,31,1] | [31,1,1,1] |
---|---|---|---|
Coxeter diagram | |||
Vertex figure | |||
Vertex figure symmetry | [3,2,3] (order 36) | [3,2] (order 12) | [3] (order 6) |
4-faces | |||
Cells |
The [3,4,3,3],
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.
F4 honeycombs | |||
---|---|---|---|
Extended symmetry | Extended diagram | Order | Honeycombs |
[3,3,4,3] | ×1 | ||
[3,4,3,3] | ×1 | ||
[(3,3)[3,3,4,3*]] =[(3,3)[31,1,1,1]] =[3,4,3,3] | = = | ×4 |
The [4,3,31,1],
In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.
In four-dimensional Euclidean geometry, the snub 24-cell honeycomb, or snub icositetrachoric honeycomb is a uniform space-filling tessellation by snub 24-cells, 16-cells, and 5-cells. It was discovered by Thorold Gosset with his 1900 paper of semiregular polytopes. It is not semiregular by Gosset's definition of regular facets, but all of its cells (ridges) are regular, either tetrahedra or icosahedra.
B4 honeycombs | ||||
---|---|---|---|---|
Extended symmetry | Extended diagram | Order | Honeycombs | |
[4,3,31,1]: | ×1 | |||
<[4,3,31,1]>: ↔[4,3,3,4] | ↔ | ×2 | ||
[3[1+,4,3,31,1]] ↔ [3[3,31,1,1]] ↔ [3,3,4,3] | ↔ ↔ | ×3 | ||
[(3,3)[1+,4,3,31,1]] ↔ [(3,3)[31,1,1,1]] ↔ [3,4,3,3] | ↔ ↔ | ×12 |
There are ten uniform honeycombs constructed by the Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1].
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors. An unlabeled branch implicitly represents order-3.
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.
In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.
The ten permutations are listed with its highest extended symmetry relation:
D4 honeycombs | |||
---|---|---|---|
Extended symmetry | Extended diagram | Extended group | Honeycombs |
[31,1,1,1] | (none) | ||
<[31,1,1,1]> ↔ [31,1,3,4] | ↔ | ×2 = | (none) |
<2[1,131,1]> ↔ [4,3,3,4] | ↔ | ×4 = | |
[3[3,31,1,1]] ↔ [3,3,4,3] | ↔ | ×6 = | |
[4[1,131,1]] ↔ [[4,3,3,4]] | ↔ | ×8 = ×2 | |
[(3,3)[31,1,1,1]] ↔ [3,4,3,3] | ↔ | ×24 = | |
[(3,3)[31,1,1,1]]+ ↔ [3+,4,3,3] | ↔ | ½×24 = ½ |
Regular and uniform honeycombs in 4-space:
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.
In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}.
In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells.
The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.
In four-dimensional Euclidean geometry, the truncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a truncation of the regular 24-cell honeycomb, containing tesseract and truncated 24-cell cells.
In four-dimensional Euclidean geometry, the truncated 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by 24-cell and truncated 16-cell facets.
In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.
In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a bitruncation of a tesseractic honeycomb. It is also called a cantic quarter tesseractic honeycomb from its q2{4,3,3,4} construction.
In four-dimensional Euclidean geometry, the steriruncitruncated tesseractic honeycomb is a uniform space-filling honeycomb.
In four-dimensional Euclidean geometry, the truncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a truncation of a tesseractic honeycomb creating truncated tesseracts, and adding new 16-cell facets at the original vertices.
In four-dimensional Euclidean geometry, the cantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a cantellation of a tesseractic honeycomb creating cantellated tesseracts, and new 24-cell and octahedral prism facets at the original vertices.
In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a runcination of a tesseractic honeycomb creating runcinated tesseracts, and new tesseract, rectified tesseract and cuboctahedral prism facets.
In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the steritruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcicantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the runcicantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the stericantitruncated tesseractic honeycomb is a uniform space-filling honeycomb. It is composed of runcitruncated 16-cell, cantitruncated tesseract, rhombicuboctahedral prism, truncated cuboctahedral prism, and 4-8 duoprism facets, arranged around an irregular 5-cell vertex figure.
In four-dimensional Euclidean geometry, the steric tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the steriruncic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the stericantic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
In four-dimensional Euclidean geometry, the steriruncicantic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.
Fundamental convex regular and uniform honeycombs in dimensions 2-9 | ||||||
---|---|---|---|---|---|---|
Space | Family | / / | ||||
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |