Skew apeirohedron

Last updated

In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.

Contents

Skew apeirohedra have also been called polyhedral sponges.

Many are directly related to a convex uniform honeycomb, being the polygonal surface of a honeycomb with some of the cells removed. Characteristically, an infinite skew polyhedron divides 3-dimensional space into two halves. If one half is thought of as solid the figure is sometimes called a partial honeycomb.

Regular skew apeirohedra

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra (apeirohedra). [1]

Coxeter and Petrie found three of these that filled 3-space:

Regular skew apeirohedra
Mucube external.png
{4,6|4}
mucube
Muoctahedron external.png
{6,4|4}
muoctahedron
Mutetrahedron external.png
{6,6|3}
mutetrahedron

There also exist chiral skew apeirohedra of types {4,6}, {6,4}, and {6,6}. These skew apeirohedra are vertex-transitive, edge-transitive, and face-transitive, but not mirror symmetric ( Schulte 2004 ).

Beyond Euclidean 3-space, in 1967 C. W. L. Garner published a set of 31 regular skew polyhedra in hyperbolic 3-space. [2]

Gott's regular pseudopolyhedrons

J. Richard Gott in 1967 published a larger set of seven infinite skew polyhedra which he called regular pseudopolyhedrons, including the three from Coxeter as {4,6}, {6,4}, and {6,6} and four new ones: {5,5}, {4,5}, {3,8}, {3,10}. [3] [4]

Gott relaxed the definition of regularity to allow his new figures. Where Coxeter and Petrie had required that the vertices be symmetrical, Gott required only that they be congruent. Thus, Gott's new examples are not regular by Coxeter and Petrie's definition.

Gott called the full set of regular polyhedra, regular tilings, and regular pseudopolyhedra as regular generalized polyhedra, representable by a {p,q} Schläfli symbol, with by p-gonal faces, q around each vertex. However neither the term "pseudopolyhedron" nor Gott's definition of regularity have achieved wide usage.

Crystallographer A.F. Wells in 1960's also published a list of skew apeirohedra. Melinda Green published many more in 1998.

{p,q}Cells
around a vertex
Vertex
faces
Larger
pattern
Space groupRelated H2
orbifold
notation
Cubic
space
group
Coxeter
notation
Fibrifold
notation
{4,5}3 cubes Pseudo-platonic cubic polyhedron vertex.png Pseudo-platonic cubic polyhedron.png Im3m[[4,3,4]]8°:2*4222
{4,5}1 truncated octahedron
2 hexagonal prisms
Pseudo-platonic hexagonal prism truncated octahedral polyhedron vertex.png I3[[4,3+,4]]8°:22*42
{3,7}1 octahedron
1 icosahedron
Pseudo-platonic octa-icosahedral vertex.png Pseudo-platonic octa-icosahedral.png Fd3[[3[4]]]+3222
{3,8}2 snub cubes Pseudo-platonic snub cubic polyhedron vertex.png Uniform apeirohedron snub cube 33333333.png Fm3m[4,(3,4)+]2−−32*
{3,9}1 tetrahedron
3 octahedra
Pseudo-platonic tetra-octahedral polyhedron vertex.png Pseudo-platonic tetra-octahedral polyhedron2.png Fd3m[[3[4]]]2+:22*32
{3,9}1 icosahedron
2 octahedra
Pseudo-platonic pyritohedral polyhedron vertex.png I3[[4,3+,4]]8°:222*2
{3,12}5 octahedra Pseudo-platonic octahedral polyhedron vertex.png Sk12x3.gif Im3m[[4,3,4]]8°:22*32

Prismatic forms

Five-square skew polyhedron.png
Prismatic form: {4,5}

There are two prismatic forms:

  1. {4,5}: 5 squares on a vertex (Two parallel square tilings connected by cubic holes.)
  2. {3,8}: 8 triangles on a vertex (Two parallel triangle tilings connected by octahedral holes.)

Other forms

{3,10} is also formed from parallel planes of triangular tilings, with alternating octahedral holes going both ways.

{5,5} is composed of 3 coplanar pentagons around a vertex and two perpendicular pentagons filling the gap.

Gott also acknowledged that there are other periodic forms of the regular planar tessellations. Both the square tiling {4,4} and triangular tiling {3,6} can be curved into approximating infinite cylinders in 3-space.

Theorems

He wrote some theorems:

  1. For every regular polyhedron {p,q}: (p-2)*(q-2)<4. For Every regular tessellation: (p-2)*(q-2)=4. For every regular pseudopolyhedron: (p-2)*(q-2)>4.
  2. The number of faces surrounding a given face is p*(q-2) in any regular generalized polyhedron.
  3. Every regular pseudopolyhedron approximates a negatively curved surface.
  4. The seven regular pseudopolyhedron are repeating structures.

Uniform skew apeirohedra

There are many other uniform (vertex-transitive) skew apeirohedra. Wachmann, Burt and Kleinmann (1974) discovered many examples but it is not known whether their list is complete.

A few are illustrated here. They can be named by their vertex configuration, although it is not a unique designation for skew forms.

Uniform skew apeirohedra related to uniform honeycombs
4.4.6.66.6.8.8
Cantitruncated cubic honeycomb apeirohedron 4466.png Omnitruncated cubic honeycomb apeirohedron 4466.png Runcicantic cubic honeycomb apeirohedron 6688.png
Related to cantitruncated cubic honeycomb, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngRelated to runcicantic cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
4.4.4.64.8.4.83.3.3.3.3.3.3
Omnitruncated cubic honeycomb apeirohedron 4446.png Skew polyhedron 4848.png Icosahedron octahedron infinite skew pseudoregular polyhedron.png
Related to the omnitruncated cubic honeycomb: CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
4.4.4.64.4.4.83.4.4.4.4
Apeirohedron truncated octahedra and hexagonal prism 4446.png Octagonal prism apeirohedron 4448.png Skew polyhedron 34444.png
Related to the runcitruncated cubic honeycomb.
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Prismatic uniform skew apeirohedra
4.4.4.4.44.4.4.6
Pseudoregular apeirohedron prismatic 44444.png
Related to CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Skew polyhedron 4446a.png
Related to CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png

Others can be constructed as augmented chains of polyhedra:

Coxeter helix 3 colors.png
Coxeter helix 3 colors cw.png
Cube stack diagonal-face helix apeirogon.png
Uniform
Boerdijk–Coxeter helix
Stacks of cubes

See also

Related Research Articles

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Regular polytope</span> Polytope with highest degree of symmetry

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension jn.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Vertex figure</span> Shape made by slicing off a corner of a polytope

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Skew polygon</span> Polygon whose vertices are not all coplanar

In geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface of such a polygon is not uniquely defined.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">Petrie polygon</span> Skew polygon derived from a polytope

In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon in which every n – 1 consecutive sides belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a regular polyhedron is a skew polygon such that every two consecutive sides belongs to one of the faces. Petrie polygons are named for mathematician John Flinders Petrie.

In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

<span class="mw-page-title-main">Order-4 hexagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,4}.

<span class="mw-page-title-main">Rhombitetrahexagonal tiling</span>

In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.

<span class="mw-page-title-main">Regular skew apeirohedron</span> Infinite regular skew polyhedron

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron, with either skew regular faces or skew regular vertex figures.

References

  1. Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
  2. Garner, C. W. L. Regular Skew Polyhedra in Hyperbolic Three-Space. Can. J. Math. 19, 1179-1186, 1967.
  3. J. R. Gott, Pseudopolyhedrons, American Mathematical Monthly, Vol 74, p. 497-504, 1967.
  4. The Symmetries of things, Pseudo-platonic polyhedra, p.340-344