Hendecahedron

Last updated
The bisymmetric hendecahedron contains 11 faces and can be arranged in 3D without gaps. Bisymmetric Hendecahedron.gif
The bisymmetric hendecahedron contains 11 faces and can be arranged in 3D without gaps.

A hendecahedron (or undecahedron) is a polyhedron with 11 faces. There are numerous topologically distinct forms of a hendecahedron, for example the decagonal pyramid, and enneagonal prism.

Contents

Three forms are Johnson solids: augmented hexagonal prism, biaugmented triangular prism, and elongated pentagonal pyramid.

Two classes, the bisymmetric and the sphenoid hendecahedra, are space-filling. [1]

Name of hendecahedron

The name of hendecahedron is based on its meaning. Hen- represents one. Deca represents ten, and when combined with the polyhedron suffix -hedron, the name becomes Hendecahedron.

Common hendecahedron

In all the convex hendecahedrons, there are a total of 440,564 convex ones with distinct differences in topology. There are significant differences in the structure of topology, which means two types of polyhedrons cannot be transformed by moving vertex positions, twisting, or scaling, such as a pentagonal pyramid and a nine diagonal column. They can't change with each other, so their topology structure is different. But the pentagonal prism and enneagonal prism can interchange by stretching out or drawing back one of the nine sides of the scale, so the triangulum prism and the triangulum pyramid have no obvious difference in topology.

The common hendecahedrons are cones, cylinders, some Jason polyhedrons, and the semi-regular polyhedron. The semi-regular polyhedron here is not the Archimedean solid, but the enneagonal prism.

Other hendecahedrons include enneagonal prism, Spherical octagonal pyramid, two side taper triangular prism of the duality of six, side cone Angle and bisymmetric hendecahedron, which can close shop space.

Bisymmetric hendecahedron

The bisymmetric hendecahedron is a space-filling polyhedron which can be assembled into layers of interpenetrating "boat-shaped" tetramers, which in turn are then stacked to fill space; it is hence a three-dimensional analogue of the Cairo pentagon.

Net of bisymmetric hendecahedron Net of Bisymmetric Hendecahedron.svg
Net of bisymmetric hendecahedron

Sphenoid hendecahedron

The sphenoid hendecahedron is a space-filling polyhedron which can be assembled into layers of the Floret tiling, which in turn are stacked to fill space.

Hendecahedron in chemistry

In the chemistry, after removing all 18 sides in borane hydrogen ions ([B11H11]), it is an Octadecahedron. If making a perpendicular to the center of gravity to the surface of a boron atom, a new polyhedron is constructed, which is 18 surface structures of the dual polyhedron, also one of hendecahedrons.

Convex

There are 440,564 topologically distinct convex hendecahedra, excluding mirror images, having at least 8 vertices. [2] (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a "Johnson solid".

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

In geometry, a pentahedron is a polyhedron with five faces or sides. There are no face-transitive polyhedra with five sides and there are two distinct topological types.

<span class="mw-page-title-main">Decahedron</span> Polyhedron with 10 faces

In geometry, a decahedron is a polyhedron with ten faces. There are 32300 topologically distinct decahedra, and none are regular, so this name does not identify a specific type of polyhedron except for the number of faces.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Faceting</span>

In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.

<span class="mw-page-title-main">Heptahedron</span> Type of three-dimensional shape

A heptahedron is a polyhedron having seven sides, or faces.

<span class="mw-page-title-main">Tetradecahedron</span> Polyhedron with 14 faces

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

<span class="mw-page-title-main">Pentakis icosidodecahedron</span> Geodesic polyhedron with 80 faces

In geometry, the pentakis icosidodecahedron or subdivided icosahedron is a convex polyhedron with 80 triangular faces, 120 edges, and 42 vertices. It is a dual of the truncated rhombic triacontahedron.

<span class="mw-page-title-main">Enneahedron</span> Polyhedron with 9 faces

In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular.

<span class="mw-page-title-main">Octadecahedron</span> Polyhedron with 18 faces

In geometry, an octadecahedron is a polyhedron with 18 faces. No octadecahedron is regular; hence, the name does not commonly refer to one specific polyhedron.

A tridecahedron is a polyhedron with thirteen faces. There are numerous topologically distinct forms of a tridecahedron, for example the dodecagonal pyramid and hendecagonal prism. However, a tridecahedron cannot be a regular polyhedron, because there is no regular polygon that can form a regular tridecahedron, and there are only five known regular polyhedra.

A hexadecahedron is a polyhedron with 16 faces. No hexadecahedron is regular; hence, the name is ambiguous. There are numerous topologically distinct forms of a hexadecahedron, for example the pentadecagonal pyramid, tetradecagonal prism and heptagonal antiprism.

A heptadecahedron is a polyhedron with 17 faces. No heptadecahedron is regular; hence, the name is ambiguous. There are numerous topologically distinct forms of a heptadecahedron, for example the hexadecagonal pyramid and pentadecagonal prism.

<span class="mw-page-title-main">Chamfer (geometry)</span> Geometric operation which truncates the edges of polyhedra

In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.

<span class="mw-page-title-main">Elongated gyrobifastigium</span> Space-filling polyhedron with 8 faces

In geometry, the elongated gyrobifastigium or gabled rhombohedron is a space-filling octahedron with 4 rectangles and 4 right-angled pentagonal faces.

References

  1. Inchbald (1996)
  2. Counting polyhedra