Heptadecahedron

Last updated

A heptadecahedron (or heptakaidecahedron) is a polyhedron with 17 faces. No heptadecahedron is regular; hence, the name is ambiguous. There are numerous topologically distinct forms of a heptadecahedron, for example the hexadecagonal pyramid and pentadecagonal prism.

Contents

Convex

There are 6,415,851,530,241 topologically distinct convex heptadecahedra, excluding mirror images, having at least 11 vertices. [1] (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

The infinite Laves graph has convex heptadecahedral Voronoi cells. Because of the symmetries of the graph, these heptadecahedra are plesiohedra and form an isohedral tessellation of three-dimensional space. [2]

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In geometry, an octahedron is a polyhedron with eight faces. An octahedron can be considered as a square bipyramid. When the edges of a square bipyramid are all equal in length, it produces a regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. It is also an example of a deltahedron. An octahedron is the three-dimensional case of the more general concept of a cross polytope.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

<span class="mw-page-title-main">Heptahedron</span> Type of three-dimensional shape

A heptahedron is a polyhedron having seven sides, or faces.

The doubly connected edge list (DCEL), also known as half-edge data structure, is a data structure to represent an embedding of a planar graph in the plane, and polytopes in 3D. This data structure provides efficient manipulation of the topological information associated with the objects in question. It is used in many algorithms of computational geometry to handle polygonal subdivisions of the plane, commonly called planar straight-line graphs (PSLG). For example, a Voronoi diagram is commonly represented by a DCEL inside a bounding box.

<span class="mw-page-title-main">Tetradecahedron</span> Polyhedron with 14 faces

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

<span class="mw-page-title-main">Enneahedron</span> Polyhedron with 9 faces

In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular.

<span class="mw-page-title-main">Octadecahedron</span> Polyhedron with 18 faces

In geometry, an octadecahedron is a polyhedron with 18 faces. No octadecahedron is regular; hence, the name does not commonly refer to one specific polyhedron.

<span class="mw-page-title-main">Hendecahedron</span> Polyhedron with 11 faces

A hendecahedron is a polyhedron with 11 faces. There are many topologically distinct forms of a hendecahedron, for example the decagonal pyramid, and enneagonal prism.

<span class="mw-page-title-main">Tridecahedron</span> Polyhedron with 13 faces

A tridecahedron, or triskaidecahedron, is a polyhedron with thirteen faces. There are numerous topologically distinct forms of a tridecahedron, for example the dodecagonal pyramid and hendecagonal prism. However, a tridecahedron cannot be a regular polyhedron, because there is no regular polygon that can form a regular tridecahedron, and there are only five known regular convex polyhedra.

<span class="mw-page-title-main">Pentadecahedron</span> Polyhedron with 15 faces

A pentadecahedron is a polyhedron with 15 faces. No pentadecahedron is regular; hence, the name is ambiguous. There are numerous topologically distinct forms of a pentadecahedron, for example the tetradecagonal pyramid, and tridecagonal prism. In the pentadecahedron, none of the shapes are regular polyhedra. In other words, a regular pentadecahedron does not exist, and the pentadecahedron cannot fill space; a space-filling pentadecahedron does not exist.

<span class="mw-page-title-main">Hexadecahedron</span> Polyhedron with 16 faces

A hexadecahedron is a polyhedron with 16 faces. No hexadecahedron is regular; hence, the name is ambiguous. There are numerous topologically distinct forms of a hexadecahedron, for example the pentadecagonal pyramid, tetradecagonal prism and heptagonal antiprism.

<span class="mw-page-title-main">3-3 duoprism</span>

In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope. It can be constructed as the Cartesian product of two triangles and is the simplest of an infinite family of four-dimensional polytopes constructed as Cartesian products of two polygons, the duoprisms.

<span class="mw-page-title-main">Enneadecahedron</span> Polyhedron with 19 faces

A enneadecahedron is a polyhedron with 19 faces. No enneadecahedron is regular; hence, the name is ambiguous.

References

  1. Counting polyhedra
  2. Schoen, Alan H. (June–July 2008), "On the graph (10,3)-a" (PDF), Notices of the American Mathematical Society, 55 (6): 663.