Enneahedron

Last updated
The three-dimensional associahedron, an example of an enneahedron Associahedron K5.svg
The three-dimensional associahedron, an example of an enneahedron

In geometry, an enneahedron (or nonahedron) is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. [1] None of them are regular.

Contents

Examples

The most familiar enneahedra are the octagonal pyramid and the heptagonal prism. The heptagonal prism is a uniform polyhedron, with two regular heptagon faces and seven square faces. The octagonal pyramid has eight isosceles triangular faces around a regular octagonal base. Two more enneahedra are also found among the Johnson solids: the elongated square pyramid and the elongated triangular bipyramid. The three-dimensional associahedron, with six pentagonal faces and three quadrilateral faces, is an enneahedron. Five Johnson solids have enneahedral duals: the triangular cupola, gyroelongated square pyramid, self-dual elongated square pyramid, triaugmented triangular prism (whose dual is the associahedron), and tridiminished icosahedron. Another enneahedron is the diminished trapezohedron with a square base, and 4 kite and 4 triangle faces.

Prism 7.png
Heptagonal prism
Elongated square pyramid.png
Elongated square pyramid
Elongated triangular dipyramid.png
Elongated triangular bipyramid
Dual triangular cupola.png
Dual of triangular cupola
Dual gyroelongated square pyramid.png
Dual of gyroelongated square pyramid
Dual tridiminished icosahedron.png
Dual of tridiminished icosahedron
Diminished square trapezohedron.png
Square diminished trapezohedron
Associahedron.gif
Truncated triangular bipyramid, near-miss Johnson solid, and associahedron.
Herschel enneahedron.png
Herschel enneahedron

The Herschel graph represents the vertices and edges of the Herschel enneahedron above, with all of its faces quadrilaterals. It is the simplest polyhedron without a Hamiltonian cycle, [2] the only convex enneahedron in which all faces have the same number of edges, [3] and one of only three bipartite convex enneahedra. [4]

The two smallest possible isospectral polyhedral graphs are the graphs of enneahedra Isospectral enneahedra.svg
The two smallest possible isospectral polyhedral graphs are the graphs of enneahedra

The smallest pair of isospectral polyhedral graphs are enneahedra with eight vertices each. [5]

Space-filling enneahedra

The Basilica of Our Lady (Maastricht), whose enneahedral tower tops form a space-filling polyhedron. Apsis Onze Lieve Vrouwkerk Maastricht.jpg
The Basilica of Our Lady (Maastricht), whose enneahedral tower tops form a space-filling polyhedron.

Slicing a rhombic dodecahedron in half through the long diagonals of four of its faces results in a self-dual enneahedron, the square diminished trapezohedron, with one large square face, four rhombus faces, and four isosceles triangle faces. Like the rhombic dodecahedron itself, this shape can be used to tessellate three-dimensional space. [6] An elongated form of this shape that still tiles space can be seen atop the rear side towers of the 12th-century Romanesque Basilica of Our Lady (Maastricht). The towers themselves, with their four pentagonal sides, four roof facets, and square base, form another space-filling enneahedron.

More generally, Goldberg (1982) found at least 40 topologically distinct space-filling enneahedra. [7]

Topologically distinct enneahedra

There are 2606 topologically distinct convex enneahedra, excluding mirror images. These can be divided into subsets of 8, 74, 296, 633, 768, 558, 219, 50, with 7 to 14 vertices respectively. [8] A table of these numbers, together with a detailed description of the nine-vertex enneahedra, was first published in the 1870s by Thomas Kirkman. [9]

Related Research Articles

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets, or sides, with three meeting at each vertex. Viewed from a corner, it is a hexagon and its net is usually depicted as a cross.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Bicupola (geometry)</span> Solid made from 2 cupolae joined base-to-base

In geometry, a bicupola is a solid formed by connecting two cupolae on their bases.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Simple polytope</span> N-dimensional polytope with vertices adjacent to N facets

In geometry, a d-dimensional simple polytope is a d-dimensional polytope each of whose vertices are adjacent to exactly d edges (also d facets). The vertex figure of a simple d-polytope is a (d – 1)-simplex.

<span class="mw-page-title-main">Tetradecahedron</span> Polyhedron with 14 faces

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

<span class="mw-page-title-main">Herschel graph</span> Bipartite non-Hamiltonian polyhedral graph

In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.

<span class="mw-page-title-main">Octadecahedron</span> Polyhedron with 18 faces

In geometry, an octadecahedron is a polyhedron with 18 faces. No octadecahedron is regular; hence, the name does not commonly refer to one specific polyhedron.

<span class="mw-page-title-main">Diminished trapezohedron</span> Polyhedron made by truncating one end of a trapezohedron

In geometry, a diminished trapezohedron is a polyhedron in an infinite set of polyhedra, constructed by removing one of the polar vertices of a trapezohedron and replacing it by a new face (diminishment). It has one regular n-gonal base face, n triangle faces around the base, and n kites meeting on top. The kites can also be replaced by rhombi with specific proportions.

<span class="mw-page-title-main">Hendecahedron</span> Polyhedron with 11 faces

A hendecahedron is a polyhedron with 11 faces. There are numerous topologically distinct forms of a hendecahedron, for example the decagonal pyramid, and enneagonal prism.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

<span class="mw-page-title-main">Elongated gyrobifastigium</span> Space-filling polyhedron with 8 faces

In geometry, the elongated gyrobifastigium or gabled rhombohedron is a space-filling octahedron with 4 rectangles and 4 right-angled pentagonal faces.

<span class="mw-page-title-main">Diminished rhombic dodecahedron</span>

In geometry, a diminished rhombic dodecahedron is a rhombic dodecahedron with one or more vertices removed. This article describes diminishing one 4-valence vertex. This diminishment creates one new square face while 4 rhombic faces are reduced to triangles. It has 13 vertices, 24 edges, and 13 faces. It has C4v symmetry, order 8.

References

  1. Steven Dutch: How Many Polyhedra are There? Archived 2010-06-07 at the Wayback Machine
  2. Barnette, David; Jucovič, Ernest (1970), "Hamiltonian circuits on 3-polytopes", Journal of Combinatorial Theory , 9 (1): 54–59, doi: 10.1016/S0021-9800(70)80054-0
  3. By the handshaking lemma, a face-regular polyhedron with an odd number of faces must have faces with an even number of edges, which for convex polyhedra can only be quadrilaterals. An enumeration of the dual graphs of quadrilateral-faced polyhedra is given by Broersma, H. J.; Duijvestijn, A. J. W.; Göbel, F. (1993), "Generating all 3-connected 4-regular planar graphs from the octahedron graph", Journal of Graph Theory, 17 (5): 613–620, doi:10.1002/jgt.3190170508, MR   1242180 . Table 1, p. 619, shows that there is only one with nine faces.
  4. Dillencourt, Michael B. (1996), "Polyhedra of small order and their Hamiltonian properties", Journal of Combinatorial Theory, Series B, 66 (1): 87–122, doi:10.1006/jctb.1996.0008, MR   1368518 ; see Table IX, p. 102.
  5. Hosoya, Haruo; Nagashima, Umpei; Hyugaji, Sachiko (1994), "Topological twin graphs. Smallest pair of isospectral polyhedral graphs with eight vertices", Journal of Chemical Information and Modeling, 34 (2): 428–431, doi:10.1021/ci00018a033 .
  6. Critchlow, Keith (1970), Order in space: a design source book, Viking Press, p. 54.
  7. Goldberg, Michael (1982), "On the space-filling enneahedra", Geometriae Dedicata, 12 (3): 297–306, doi:10.1007/BF00147314, S2CID   120914105 .
  8. Counting polyhedra
  9. Biggs, N.L. (1981), "T.P. Kirkman, mathematician", The Bulletin of the London Mathematical Society, 13 (2): 97–120, doi:10.1112/blms/13.2.97, MR   0608093 .