Pentagonal trapezohedron

Last updated
Pentagonal trapezohedron
Pentagonal trapezohedron.svg
Type trapezohedra
Conway dA5
Coxeter diagramCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 10.pngCDel node.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 5.pngCDel node fh.png
Faces10 kites
Edges20
Vertices12
Face configuration V5.3.3.3
Symmetry group D5d, [2+,10], (2*5), order 20
Rotation group D5, [2,5]+, (225), order 10
Dual polyhedron pentagonal antiprism
Propertiesconvex, face-transitive

In geometry, a pentagonal trapezohedron is the third in an infinite series of face-transitive polyhedra which are dual polyhedra to the antiprisms. It has ten faces (i.e., it is a decahedron) which are congruent kites.

Contents

It can be decomposed into two pentagonal pyramids and a pentagonal antiprism in the middle. It can also be decomposed into two pentagonal pyramids and a dodecahedron in the middle.

10-sided dice

Ten ten-sided dice Ten D10s.jpg
Ten ten-sided dice

The pentagonal trapezohedron was patented for use as a gaming die (i.e. "game apparatus") in 1906. [1] These dice are used for role-playing games that use percentile-based skills; however, a twenty-sided die can be labeled with the numbers 0-9 twice to use for percentages instead.

Subsequent patents on ten-sided dice have made minor refinements to the basic design by rounding or truncating the edges. This enables the die to tumble so that the outcome is less predictable. One such refinement became notorious at the 1980 Gen Con [2] when the patent was incorrectly thought to cover ten-sided dice in general.

Ten-sided dice are commonly numbered from 0 to 9, as this allows two to be rolled in order to easily obtain a percentile result. Where one die represents the 'tens', the other represents 'units' therefore a result of 7 on the former and 0 on the latter would be combined to produce 70. A result of double-zero is commonly interpreted as 100. Some ten-sided dice (often called 'Percentile Dice') are sold in sets of two where one is numbered from 0 to 9 and the other from 00 to 90 in increments of 10, thus making it impossible to misinterpret which one is the tens and which the units die. Ten-sided dice may also be marked 1 to 10 when a random number in this range is desirable.

Spherical tiling

The pentagonal trapezohedron also exists as a spherical tiling, with 2 vertices on the poles, and alternating vertices equally spaced above and below the equator.

Spherical pentagonal trapezohedron.svg

See also

Family of n-gonal trapezohedra
Trapezohedron nameDigonal trapezohedron
(Tetrahedron)
Trigonal trapezohedron Tetragonal trapezohedron Pentagonal trapezohedron Hexagonal trapezohedron ... Apeirogonal trapezohedron
Polyhedron image Digonal trapezohedron.png TrigonalTrapezohedron.svg Tetragonal trapezohedron.png Pentagonal trapezohedron.svg Hexagonal trapezohedron.png ...
Spherical tiling image Spherical digonal antiprism.svg Spherical trigonal trapezohedron.svg Spherical tetragonal trapezohedron.svg Spherical pentagonal trapezohedron.svg Spherical hexagonal trapezohedron.svg Plane tiling image Apeirogonal trapezohedron.svg
Face configuration V2.3.3.3V3.3.3.3V4.3.3.3V5.3.3.3V6.3.3.3...V∞.3.3.3

Related Research Articles

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Regular icosahedron</span> Convex polyhedron with 20 triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appearances in the garnet crystal, the architectural philosophies, practical usages, and toys.

<span class="mw-page-title-main">Gyroelongated square bipyramid</span> 17th Johnson solid

In geometry, the gyroelongated square bipyramid is a polyhedron with 16 triangular faces. it can be constructed from a square antiprism by attaching two equilateral square pyramids to each of its square faces. The same shape is also called hexakaidecadeltahedron, heccaidecadeltahedron, or tetrakis square antiprism; these last names mean a polyhedron with 16 triangular faces. It is an example of deltahedron, and of a Johnson solid.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron, is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Decahedron</span> Polyhedron with 10 faces

In geometry, a decahedron is a polyhedron with ten faces. There are 32300 topologically distinct decahedra, and none are regular, so this name does not identify a specific type of polyhedron except for the number of faces.

<span class="mw-page-title-main">Trigonal trapezohedron</span> Polyhedron with 6 congruent rhombus faces

In geometry, a trigonal trapezohedron is a polyhedron with six congruent quadrilateral faces, which may be scalene or rhomboid. The variety with rhombus-shaped faces faces is a rhombohedron. An alternative name for the same shape is the trigonal deltohedron.

<span class="mw-page-title-main">Tetragonal trapezohedron</span> Trapezohedron with eight faces

In geometry, a tetragonal trapezohedron, or deltohedron, is the second in an infinite series of trapezohedra, which are dual to the antiprisms. It has eight faces, which are congruent kites, and is dual to the square antiprism.

<span class="mw-page-title-main">Hexagonal trapezohedron</span> Polyhedron made of 12 congruent kites

In geometry, a hexagonal trapezohedron or deltohedron is the fourth in an infinite series of trapezohedra which are dual polyhedra to the antiprisms. It has twelve faces which are congruent kites. It can be described by the Conway notation dA6.

<span class="mw-page-title-main">Truncated trapezohedron</span> Polyhedron made by cutting off a trapezohedrons polar vertices

In geometry, an n-gonaltruncated trapezohedron is a polyhedron formed by a n-gonal trapezohedron with n-gonal pyramids truncated from its two polar axis vertices.

<span class="mw-page-title-main">Elongated bipyramid</span> Polyhedron formed by capping a prism with pyramids

In geometry, the elongated bipyramids are an infinite set of polyhedra, constructed by elongating an n-gonal bipyramid.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry and topology, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Regular dodecahedron</span> Convex polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity.

<span class="mw-page-title-main">Tetradecahedron</span> Polyhedron with 14 faces

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

<span class="mw-page-title-main">Enneahedron</span> Polyhedron with 9 faces

In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular.

<span class="mw-page-title-main">Diminished trapezohedron</span> Polyhedron made by truncating one end of a trapezohedron

In geometry, a diminished trapezohedron is a polyhedron in an infinite set of polyhedra, constructed by removing one of the polar vertices of a trapezohedron and replacing it by a new face (diminishment). It has one regular n-gonal base face, n triangle faces around the base, and n kites meeting on top. The kites can also be replaced by rhombi with specific proportions.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References

  1. U.S. patent 809,293
  2. "Greg Peterson about Gen Con 1980: The big news of the year was that someone had 'invented' the ten-sided die". Archived from the original on 2016-08-14.

Sources